Механизм работы вестибулярного анализатора 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Механизм работы вестибулярного анализатора



Механизм действия вестибулярного аппарата основан на законах физики: преобразование механической энергии в нервные сигналы.

Выполняя функцию пространственной орентации, вестибулярный аппарат работает вместе со зрительным и проприорецепторным анализатором. Связи вестибулярных ядер с ядрами глазодвигательных нервов, которые осуществляют движения глаз, имеют отношение к координации движения глаз и изменениям положения головы в пространстве.

Вестибулярный аппарат людей, находящихся в состоянии невесомости, не функционирует в полной мере и представлен только зрительным и проприорецепторным анализаторами. Для адекватного управления организмом в невесомости человеку требуется специальная подготовка.

Подобную ситуацию можно сымитировать, если неожиданно для человека перевернуть его зрительное поле с помощью оптического устройства инвертоскопа на 180 градусов. В этом случае проприоцептивные сигналы и сигналы из среднего уха будут указывать на прямое положение тела, а наблюдаемое оптическое поле — на перевернутое. Человек становится дезориентирован.

Подобное явление связано с «морской болезнью» и укачиванием в транспорте. Одна из причин морской болезни — несоответствие между сигналами, которые поступают в центральную нервную систему из вестибулярного аппарата и органов зрения. Например, такой конфликт может возникнуть в момент качки, когда человек находится внутри корабля и не видит горизонт. Вестибулярный аппарат регистрирует повторяющиеся движения, а глаза видят неподвижные предметы.

Из-за тесных связей вестибулярных нервов с вегетативной нервной системой раздражение вестибулярного аппарата сопровождается различными вегетативными рефлексами: учащением и замедлением сердцебиения, учащением и замедлением дыхания, сужением и расширением кровеносных сосудов, повышением и понижением артериального давления, рвотой, усиленным потоотделением.

 

20. Физиология вкуса.

 

Ощущение вкуса обусловлено избирательной и высокочувствительной реакцией специализированных сенсорных клеток на присутствие молекул определенных соединений (на химические вещества).

У человека сенсорные вкусовые клетки расположены на поверхности языка. Вместе с опорными клетками они образуют группы из 40-60 элементов - вкусовые почки

Около 200 вкусовых почек содержит сосок, окруженный валиком. Всего у человека несколько тысяч вкусовых почек. Между сосочками расположены железы, выделяющие жидкость, которая омывает вкусовые почки (что улучшает вкусовое восприятие). Через поры на поверхности сосочка выходит общая камера, в которой собраны чувствительные микроворсинки. Молекула пищи, попадая в пору, достигает вкусовых клеток, стимулирует рецепторный потенциал. Возбуждение синаптически передается афферентным волокнам черепно-мозговых нервов, которые проводят его в виде импульсов в ЦНС.

Сенсорные нейроны височной доли коры головного мозга реагируют на вещества с определенным вкусовым качеством, или на температурную стимуляцию языка. Вкусовые рецепторы воспринимают четыре основных вида вкусовых раздражителей: сладкий, кислый, горький и соленый

Эти вкусы ассоциируются с типичными веществами, так вкус сладкого с природными углеводами типа сахарозы, глюкозы; соленый с хлоридом натрия. Кислоты преимущественно кислого вкуса. Растительные алкалоиды горькие. Также вещества могу иметь смешанный вкус, как хлорид калия - горький и соленый одновременно, апельсин - сладко-кислый.

Восприятие вкуса происходит зонами специфической чувствительности находящимися на поверхности языка (рис.9).

  • * Горький вкус воспринимает основание языка.
  • * Другие вкусовые качества - боковые поверхности и кончик языка, причем эти зоны взаимно перекрываются.

Между химическими свойствами вещества и его вкусом нет однозначного разделения. К примеру, не только сахар, но и соли свинца сладкие, а самый сладкий вкус у заменителя сахара - сахарина. Следовательно, на воспринимаемый вкус влияет не только природа вещества, но и его количество и концентрация. При низкой концентрации поваренная соль кажется сладкой, и только при повышении концентрации становится соленой. Чувствительность к горьким веществам значительно выше, потому что они часто ядовиты. Эта особенность предостерегает нас от опасности, даже если их концентрация в воде или пище низка.

Рис. 7 Схема языка человека. Окраской выделена его иннервация различными черепно-мозговыми нервами; контурами обведены области распределения разных типов сосочков (1-грибовидные, 2-окруженные валиком, 3-листовидные)

Локализация зон восприятия определенных вкусовых качеств показана значками

Сильные горькие раздражители легко вызывают тошноту и рвоту - это одна из защитных особенностей организма.

Эмоциональные ощущения при приеме пищи широко варьируются в зависимости от состояния организма. Так человек, испытывающий дефицит соли, считает вкус приемлемым, даже если концентрация соли в пище избыточная.

Биологическая роль вкусовых ощущений заключается не только в проверке съедобности пищи, они также влияют на процесс пищеварения. Вкусовые ощущения посредством вегетативных эфферентов влияют и на секрецию пищеварительных желез, и на её интенсивность и состав.

С возрастом у человека способность к различению вкуса снижается из-за потребления биологически активных веществ и курения (никотин, кофеин).

Замена вкусовых клеток происходит очень быстро. Продолжительность жизни клетки коло 10 дней, после чего из базальной клетки формируется новый рецептор.

21. Физиология обонятельного анализатора.

 

Обонятельный анализатор способствует ориентации организма в окружаю­щем пространстве и процессу познания внешнего мира. Он оказывает влияние на пищевое поведение, принимает участие в апробации пиши на съедобность, в на­стройке пищеварительного аппарата на обработку пищи (по механизму условного рефлекса), а также на оборонительное поведение, поскольку помогает избежать опасности благодаря способности различать вредные для организма вещества.

Классификация запахов (по В.М. Смирнову). Первая группа пахучих ве­ществ - ольфактивные вещества, которые раздражают только обонятельные клет­ки. К ним относятся запах гвоздики, лаванды, аниса, бензола, ксилола.

Вторая группа - такие вещества, которые одновременно с обонятельными клетками раздражают свободные окончания тройничных нервов в слизистой обо­лочке носа. К ним относятся - запах камфары, эфира, хлороформа.

Классификация запахов (по Б.И. Ткаченко) Основные запахи:

- Камфорный - Мускусный - Эфирный

- Гнилостный - Цветочный – Мятный - Едкий

Единой и общепринятой классификации запахов не существует. Мы не можем охарактеризовать запах, не называя вещества или предмета, которому они свой­ственны. Так, мы говорим о запахе камфары, роз, лука, в некоторых случаях обобщаем запахи родственных веществ или предметов, например цветочный, фруктовый запах и др. Считают, что возникающее многообразие различных запа­хов является результатом смешения «первичных запахов». На остроту обоняния

влияют многие факторы, например голод, ко­торый повышает остроту обоняния; беремен­ность, когда возможно не только обострение обонятельной чувствительности, но и ее из­вращение.

Периферический отдел обонятельного ана­лизатора представлен нейросенсорными клет­ками, от которых отходят два отростка: от верхней части - дендрит, несущий 6-12 ресни­чек на каждой клетке, а от основания - аксон. Окончание дендрита представляет собой пер­вичный рецептор - утолщение в виде булавы с ресничками.

Реснички, или обонятельные волоски погружены в жидкую среду – слой слизи, вырабатываемой боуменовыми железами. Наличие обонятельных волосков значительно уве­личивает площадь контакта рецептора с молекулами пахучих веществ. Движение волосков обеспечивает активный процесс захвата молекул пахучего вещества и контакта с ним, что лежит в основе целена­правленного восприятия запахов. Нейросенсорные клетки погружены в обоня­тельный эпителий, выстилающий полость носа, в котором, кроме них имеются опорные клетки, выполняющие механическую функцию и активно участвующие в метаболизме обонятельного эпителия.

Проводниковый отдел обонятельного анализатора начинается нейросенсорными клетками, аксоны которых, проходя в полость черепа через отверстие в ре­шетчатой кости, контактируют с крупными митральными клетками обонятельных луковиц, представляющими второй нейрон. Эти клетки имеют главный дендрит, дистальные веточки которого образуют с аксонами нейросенсорных обонятель­ных клеток синапсы, называемые гломерулами. Аксоны митральных клеток обо­нятельных луковиц образуют обонятельный тракт, который имеет треугольное расширение (обонятельный треугольник) и состоит из нескольких пучков. Волок­на обонятельного тракта отдельными пучками идут в передние ядра зрительного бугра. Другие авторы считают, что отростки второго нейрона идут прямо в кору большого мозга, минуя зрительные бугры.

Эфферентный контроль осуществляется с участием перигломерулярных клеток и клеток зернистого слоя, находящихся в обонятельной луковице, которые образуют эфферентные синапсы с первичными и вторичными дендритами мит­ральных клеток.

Некоторые эфферентные волокна приходят из контралатеральной луковицы через переднюю комиссуру. Нейроны, отвечающие на обонятельные стимулы, обнаружены в ретикулярной формации; имеется связь с гиппокампом и вегета­тивными ядрами гипоталамуса. Связь с лимбической системой объясняет присут­ствие эмоционального компонента в обонятельном восприятии (гедонические компоненты ощущения).

Центральный или корковый отдел обонятельного анализатора локализуется в передней части грушевидной доли коры в области извилины морского коня.

Восприятие запахов. Молекулы пахучего вещества взаимодействуют со специализированными белками, встроенными в рецептор нейросенсорных кле­ток. При этом происходит адсорбция раздражителей на хеморецепторной мем­бране. Согласно стереохимической теории, этот контакт возможен в том случае, если форма молекулы пахучего вещества соответствует форме рецепторного бел­ка в мембране ("ключ - замок"). Слизь, покрывающая поверхность хеморецептора, является структурированным матриксом. Она контролирует доступность рецепторной поверхности для молекул раздражителя и способна изменять условия рецепции. Начальным звеном обонятельной рецепции могут быть два вида взаи­модействия: первое - контактный перенос заряда при соударении молекул паху­чего вещества с рецептивным участком, и второе - образование молекулярных комплексов и комплексов с переносом заряда. Эти комплексы обязательно об­разуются с белковыми молекулами рецепторной мембраны, активные участки ко­торых выполняют функции доноров и акцепторов электронов. Существенным моментом этой теории является положение о многоточечных взаимодействиях молекул пахучих веществ и рецептивных участков. Вслед за этим взаимо­действием изменяется форма белковой молекулы, активизируются натриевые ка­налы, происходит деполяризация мембраны рецептора и генерируется рецепторный потенциал, который, достигнув критической величины, обеспечивает воз­никновение ПД в аксонном холмике нейросенсорной клетки.

Особенности кодирования обонятельной информации. Отдельная нейросенсорная клетка способна реагировать на значительное число различных пахучих веществ. Обонятельные рецепторы (так же, как и вкусовые) имеют перекрываю­щиеся профили ответов. Каждое пахучее вещество дает специфическую картину возбуждения в популяции чувствительных клеток, при этом уровень возбуждения зависит от концентрации вещества.

При действии пахучих веществ в очень малых концентрациях возникающее ощущение неспецифично, а в более высоких концентрациях выявляется запах и происходит его идентификация. Поэтому следует различать порог выявления за­паха и порог его распознавания. В волокнах обонятельного нерва при электрофи­зиологическом исследовании обнаружена непрерывная импульсация, обу­словленная подпороговым воздействием пахучих веществ. При пороговой и сверхпороговой концентрациях различных пахучих веществ возникают разные типы рисунков (паттернов) электрических импульсов, которые приходят одно­временно в различные участки обонятельной луковицы. При этом в обонятельной луковице создается своеобразная мозаика из возбужденных и невозбужденных участков. Предполагают, что это лежит в основе кодирования информации о спе­цифичности запахов.

Особенности адаптации обонятельного анализатора. Адаптация к дейст­вию пахучего вещества в обонятельном анализаторе происходит в течение десят­ка секунд или минут. Она зависит от скорости потока воздуха над обонятельным эпителием и концентрации пахучего вещества.

Различают следующие нарушения обоняния: 1) аносмия - отсутствие обо­нятельной чувствительности, 2) гипосмия - понижение обоняния, 3) гиперосмия -повышение, 4) паросмия - неправильное восприятие запахов, 5) нарушение дифференцировки, 6) обонятельные галлюцинации, когда возникают обонятельные ощущения при отсутствии пахучих веществ, и 7) обонятельная агнозия, когда че­ловек ощущает запах, но его не узнает. С возрастом в связи с преобладанием инволютивных процессов наблюдаются в основном снижение обонятельной чувст­вительности, а также другие виды функциональных расстройств обоняния.

Структурно-функциональная характеристика. В 7 мес. плод способен реагировать мимическими движениями на пахучие вещества. Функция обоня­тельного анализатора у ребенка проявляется сразу после рождения. Острота обо­няния у новорожденных в 20-100 раз ниже, чем у взрослых. На 4-м месяце жизни ребенок начинает отличать приятные запахи от неприятных и реагировать на них адекватной эмоционально-двигательной реакцией. Обонятельный анализатор в процессе онтогенеза быстро созревает и функционально полностью сформирован к 6 годам жизни. Острота обоняния достигает максимума в период полового со­зревания.

 

22. Физиология движения. Механизм регуляции движения. Утомление и истощение.

Способность перемещаться в пространстве составляет уникальное свойство животного мира. У человека каждое движение сочетает одновременно осознанный и неосознанный контроль мышечной активности.

Кроме очевидных функций перемещения тела в пространстве и манипуляции внешними объектами, двигательная система участвует в выполнении менее бросающихся в глаза, но весьма значимых задач: формирование позы и ее удержание, а также обеспечение направленности тела в сторону стимуляции для повышения эффективности восприятия.

Усложнение двигательной активности в процессе эволюционного развития привело к формированию иерархической (поэтажной) структуры программирования и коррекции движений, при этом примитивные структуры управления не утрачивались, а включались в более сложные таким образом, что у человека возникла многоуровневая система управления поведением.

Каждый новый морфологический этаж мозга, каждый очередной функциональный уровень приносит с собой новые полноценные движения. Наши конечности и тело – это кинематические цепи. Кинематическая цепь называется управляемой, если можно назначить желаемую для нас траекторию движения. Для этого необходимо связывать избыточные степени свободы. Двигательная функция человека достигла наивысшего развития в связи с прямохождением и трудовой деятельностью. Поэтому опорно-двигательный аппарат человека характеризуется наличием большого числа степеней свободы. Это происходит вследствие двух- и трехосности многих суставов. С одной стороны, скелет обеспечивает большую свободу движений, но с другой стороны – сильно затрудняет управление такой сложной системой.

Связь избыточных степеней свободы осуществляется ЦНС, а именно, происходит координация движения – преодоление избыточных степеней свободы.

Одно из решений, к которому прибегает организм, - организация синергий, т.е. содружественных движений отдельных групп мышц.

При совершении движений, особенно произвольных, необходима сенсорная коррекция. Непорядки в сенсорной коррекции приводят к расстройствам координации, нарушению порядка отдельных движений.

На нижнем уровне построения движений располагаются простые рефлекторные движения (ответная реакция на сенсорное воздействие). За них отвечают структуры спинного мозга и мозгового ствола.

Следующий уровень – уровень синергий. Этот уровень организации движений включает мозжечок и ядра больших полушарий головного мозга (полосатые тела). Для уровня синергий характерно приспособление разнообразных рефлекторных движений к выполнению согласованной работы. Синергии обеспечивают правильные чередования сокращения мышц, например, при ходьбе или беге. Система координат этого уровня привязана не к окружающему пространству, а к собственному телу.

Еще более высокий уровень – уровень синтетического сенсорного поля. Это уровень обеспечивает приспособляемость движений к внешнему миру. Движения приобретают целевой характер. Причем здесь выделяют два подуровня – первый подуровень, для него характерно пространственное движение, а второй подуровень – самый высокий – уровень праксиса (целенаправленных действий). Структуры, отвечающие за праксис, занимают (фронтальные) лобные области коры больших полушарий. Этот уровень только развит у человека. Именно в нем строятся речевые и графические координации. Нарушение этого уровня построения движения обозначают как апраксия. В этих случаях страдает не координация движений, а его реализация. Больному недоступно выполнение целенаправленных действий, “у него не слушаются собственные руки“. Такой больной все осознает, но не способен выполнить даже относительно простые инструкции.

Рефлекторный уровень организации движений.

Чем выше на эволюционной лестнице стоит организм, тем больше происходит передача тех или иных процессов под корковый контроль.

Спинной мозг обладает некоторой автономией, поскольку отдельные стимулы вызывают ответы, опосредованные связями только на уровне спинного мозга. Такие связи называются спинальными рефлексами. Рефлекс осуществляется через рефлекторную дугу (цепочку нейронов) – в ответ на стимуляцию возбуждаются афферентные волокна от кожи, далее это возбуждение через задние корешки спинного мозга достигает соответствующих мотонейронов в передних рогах спинного мозга и по их аксонам двигательная команда достигает соответствующих мышц.

Простейшими рефлексами, которые можно наблюдать, являются сгибательный и разгибательный. Такие рефлексы имеют очень короткие латентные периоды, свидетельствующие о том, что они не требуют вмешательства полушарий головного мозга и ограничиваются спинальным уровнем.

Большая часть рефлексов имеет контроль движения на более высоком уровне управления. Практически все действия человека происходят под руководством высших корковых областей. Они осваиваются человеком в течение его жизни и закрепляются путем тренировки. К ним относятся многие стереотипные процессы – ходьба, бег, письмо, игра на музыкальных инструментах, профессиональные навыки, вождение автомобиля и т.д.

Первичная моторная кора находится в прецентральной извилине (поле 4). В этой области коры находятся гигантские пирамидные клетки Беца, длинные отростки которых в составе пирамидного тракта достигают нейронов спинного мозга. Раздражение определенных точек моторной коры приводит к возникновению того или иного движения в мышцах лица, пальцев рук, спины и туловища.

Кпереди от моторной коры находится премоторная кора (поля 6, 8). Ее функция связана с планированием сложных движений. Сами планы реализуются при участии моторной коры, которая непосредственно управляет определенными движениями. Премоторная кора в свою очередь получает входы от других ассоциативных областей, что позволяет создавать наиболее адекватные планы движений. Она получает сигналы от вестибулярного аппарата о положении тела, от слуховых, тактильных и зрительных рецепторов – о ситуации, о пространстве, в котором осуществляется движение. Все это создает условия для максимально точного планирования двигательных реакций.

Нейроны первичной моторной коры воздействуют на двигательную активность посредством четырех нервных путей:

1) кортикоспинальный – он контролирует моторные нейроны передних рогов спинного мозга, управляющие движением мышц пальцев, предплечья, плеча;

2) кортикобульбарный – волокна этого пути заканчиваются на уровне продолговатого мозга на моторных ядрах V – тройничного, VII – лицевого, X – блуждающего, XII – языкоглоточного черепно-мозговых нервов; следовательно, составляющие его аксоны контролируют движения мышц лица и языка;

3) вентромедиальный – отвечает за движения тела и мышц конечностей;

4) руброспинальный – отвечают за управление верхних и нижних конечностей.

Важным компонентом моторной системы являются базальные ганглии (хвостатое ядро, скорлупа, бледный шар). Они имеют входы из коры головного мозга и мозжечка и взаимодействуют с ядрами таламуса, ядрами среднего мозга - «красным ядром» и «черной субстанцией», ретикулярной формацией.

Дегенерация волокон из ядер среднего мозга приводит к болезни Паркинсона (больному становится трудно прекратить одно движение и начать другое, отсутствует плавность движения, возникает тремор).

Важную роль в моторной системе играет мозжечок. Повреждение мозжечка приводит к трудности сохранения одной позы и вертикального положения, ригидности мышц, расстройству целостности последовательных движений и многое другое.

Не менее важную роль в управлении движением играет ретикулярная формация, особенно в движениях головы, глаз. Ретикулярная формация имеет локомоторные зоны, разрушение которых приводит к возникновению шаговых движений.

Повреждение лобной и теменной коры приводит к нарушениям в управлении движением в виде неспособности выполнять заученные некогда движения по словесной команде. Больной использует неверную последовательность движений, либо выполняет неверные действия. Это свидетельствует о том, что существуют определенные программы движений, выполнение которых контролируется многими корковыми структурами и, в том числе, лобной и теменными областями коры больших полушарий.

Таким образом, между моторной корой и двигательным аппаратом существует кольцевое взаимодействие: кора посылает эфферентные импульсы, вызывающие движение, и получает афферентные импульсы, сообщающие о произвольном движении и изменении состояния организма. Благодаря этому обеспечивается возможность точного приспособления любого движения к изменчивым условиям его осуществления, что достигается с помощью тренировки. Многократное повторение движений приводит к их автоматизации, они становятся более точными и быстрыми. На физиологическом уровне между нейронами фиксируются связи, которые закрепляются в памяти и могут извлекаться из нее по мере необходимости.



Поделиться:


Последнее изменение этой страницы: 2021-07-18; просмотров: 56; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.118.9.7 (0.049 с.)