Новое объяснение известных эффектов тракта зрения 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Новое объяснение известных эффектов тракта зрения



Теперь становится понятным сам механизм видения мной страниц не существовавшей книги на экзамене. Объяснить все это так называемой “эйдетической памятью” нельзя. Во всяком случае, здесь дано вполне конкретное объяснение эффекту “эйдетической памяти”. Теперь понятным становится также механизм “оппонентности”, или “последовательных образов”.

Отсюда, кстати, следует и то, что мы действительно видим сны, а не просто думаем, что видим. Более того, можно предпринять попытки сфотографировать, заснять на видео наши сны. В качестве аргумента в пользу этого соображения приведу результаты разработки одной чрезвычайно странной и сложной для восприятия модели понимания процессов передачи информации на уровне биополей как некоторой совокупной (коллективной) голограммы.

“Все эти факты позволяют ставить вопрос о разработке такой методики, с помощью которой можно было бы осуществлять прямую регистрацию стоячих волн, выбрасываемых из глаз во время зрительного восприятия или представления различных объектов...

Разработка такого метода существенно продвинет вперед понимание работы мозга и прольет свет на многие парапсихологические явления. Если образ того или иного предмета, генерируемый мозгом человека, действительно окажется стоячей волной, своего рода голограммой, то к этому образу могут быть применены все те принципы, которые применяются к волновым структурам.

Так, на образ как психофизическую категорию может быть распространен тот принцип нелокальности, о котором мы говорили выше и согласно которому стоячие волны могут оказаться в любой точке пространства. Реализуя принцип нелокальности в отношении психологических образов как голограмм, можно утверждать, что в каждой точке пространства в латентном, скрытом виде существуют образы и мысли всех людей.

Отсюда вытекает одна из гипотез, которая позволяет дать естественнонаучное объяснение биоинформационным контактам (телепатии). Разумеется, проблема регистрации образов как выброшенных, экстериозированных за пределы мозга стоячих волн не является простой проблемой в методическом отношении...

Но здесь научной психологии оказывает помощь совокупность материалов, полученных парапсихологами при изучении различных пси-феноменов, а также данные в психиатрии и психологии. Материалы эти при всей их исключительности свидетельствуют о реальности выдвигаемой психолого-голографической гипотезы и о том, что поиски средств объективной регистрации образов у обычных испытуемых, в конце концов, увенчаются успехом. В этом направлении сделаны очень важные наблюдения.

Например, врач-психиатр Г. Н. Крохалев проводил экспериментальные исследования галлюцинаций у больных людей и обнаружил, что зрительные галлюцинации могут быть объективно зарегистрированы на фото- и кинопленке...

По мнению этого исследователя, глаз формирует в пространстве голографическое изображение образа, возникающего в мозге. Ученый считает, что при зрительных галлюцинациях происходит обратная передача информации от центра зрительного анализатора к периферии с проекцией зрительного образа из сетчатки глаз в пространство” (А. П. Дубров, В. Н. Пушкин “Парапсихология и современное естествознание”, М., Совместное советско-американское предприятие “Соваминко”, 1990 г., стр. 40-41).

Мне представляется, что сама идея об общности информационного пространства на уровне какого-то поля (а не на уровне каких-то непонятных, в данном случае, “стоячих волн”) не лишена ни здравого смысла, ни определенной реальности. Вместе с тем, было бы вернее говорить о единстве информационного пространства всего живого мира Земли или даже значительно шире, поскольку именно этими же авторами в эксперименте выявлено влияние информационных процессов человека на растения. Все обстоит, как мы увидим, совершенно иначе.

Вместе с тем, изложенный у Дуброва и Пушкина, подход к пониманию такого единого информационного пространства все-таки путаный и неестественный, обусловленный единственным желанием - дать всем явлениям естественнонаучное толкование с позиций традиционного естествознания. Это-то и губит авторов, загоняет их в дебри головоломных умозаключений.

Вывод о каких-то “стоячих волнах”, выбрасываемых из глаз, выглядит скорее мистически, чем естественнонаучно, так как Крохалеву для их регистрации не пришлось прибегать к каким-то изощренным методам. Фотографирование связано с фиксацией того или иного светового потока, т.е. в данном случае нет и не может быть “выброса” стоячих волн.

Действительно, под “стоячей волной” следует понимать то, что мы привыкли называть просто – материя (твердые тела, жидкости, газы). В книге “Триединство Природы” было сказано, что наш материальный мир образован из некоторых сгустков плазмы, концентрируемой в отдельные элементарные частицы (электроны, протоны, нейтроны) посредством торсионных полей. Благодаря взаимодействию с физическим вакуумом эти элементарные частицы и “группируются” в твердые и жидкие тела, газы и так далее, т.е. и воспринимаются нами как материя, хотя по существу – это всего лишь сгустки энергии.

Поскольку состояние торсионных полей относительно стабильно, то это и дало повод называть такое состояние энергии как “стоячая волна” электромагнитных колебаний, хотя, по большому счету, это совершенно неверно, И то, что наблюдал Крохалев, вообще не имеет отношения к так называемым “стоячим волнам”.

Но меня в данном отрывке больше привлекает сам факт объективной регистрации на фотоматериале каких-либо галлюцинаций. Думается, что обнаружение этих феноменов у психически нездоровых людей (шизофреников) не означает невозможности проведения подобных экспериментов со здоровыми людьми: у последних просто обычно не бывает галлюцинаций, что и ограничивает возможности исследователя. Более того, не только в эксперименте, но и в обыденной жизни подобные эффекты довольно часто наблюдаются. Когда функция компенсации при сильных переживаниях (эмоциях) превосходит воздействие внешнего светового потока, попадающего в глаза, это становится заметно наблюдателю. В таких случаях обычно говорят: “глаза сверкнули”.

Здесь уместно рассмотреть пример, когда функция компенсации в тракте зрения в силу каких-либо причин постоянно формировалась с избытком, а во-вторых, такая перекомпенсация происходила лишь в одном из глаз.

“В качестве примера приведем любопытное свидетельство казачьего офицера В. А. Митрофанова, которому довелось дважды быть назначенным ординарцем к Николаю I во время маневров. Вот его рассказ о первой встрече с императором:

“Я молодецки отсалютовал, глядя прямо в глаза государя; громким голосом произнес известный рапорт… Но между тем взгляд мой, вперившийся в глаза императора еще до начала словесного рапорта, вскоре упал сначала на грудь государя, а потом на гриву его коня. Дело в том, что при всей моей смелости я не мог выдержать ужасного блеска левого глаза, из которого ярко светился конец докрасна раскаленного гвоздя и прожигал мои глаза. Несмотря на краткость времени, я успел сравнить этот левый глаз с правым, но в последнем ничего не заметил… И походный атаман, и командир полка были в восторге от моего дебюта, но сам я чувствовал полный упадок сил, хотя никому не дал возможности заметить это. Дома я долго думал о левом глазе императора и порешил, что у государя такие жгучие глаза оба…”

Далее казачий офицер пишет о том, что произошло во время второго смотра:

“Я собрал все мое мужество, имея перед собой заранее начертанный план: остановиться перед государем так, я чтобы мое лицо было параллельно его лицу; за несколько сажен до остановки начать смотреть ему прямо в глаза до тех пор, пока не кончится церемония, причем произвести сравнение левого глаза с правым. Все это я исполнил микроскопически точно…

Пока я отсалютовал и отчетливо медленно произнес заготовленную фразу, я несколько раз попеременно впивался обоими глазами то в правый, то в левый глаз императора и заметил: правый смотрел, не имея в себе решительно никакого пронизывающего блеска, а левый – все тот же раскаленный гвоздь, пронизавший меня насквозь, и еще сильнее, чем в первый раз” (Сергей Демкин “Черный глаз”, газета “Тайная власть”, №6, 2000 г, стр. 5)

Этот исторический факт интересен, в первую очередь, тем, что присутствие постоянно избыточной (в данном случае) функции компенсации здесь обнаруживается со всей очевидностью. Второе, на что сейчас следует обратить внимание, это то, что при перекомпенсации наблюдается более интенсивное, чем обычно, “выбрасывание” из глаз некоторого волнового излучения, непосредственно воздействующего на психику других людей. Следует сказать, что это излучение – особый вид биологических торсионных полей, упоминание о которых было ранее. Такое излучение “сопровождает” “взгляд”  любого человека в любой ситуации, но, обычно, оно мало для того, чтобы было непосредственно наблюдаемо. Но именно по этой причине и говорят: “глаза – зеркало души”.

Использование методов анализа на основе информационно-отражательной модели позволяет не только обеспечить само понимание происходящих явлений, но и позволяет совершенно иначе планировать эксперименты по наблюдению этих феноменов.

Что означает факт регистрации на фотоматериале указанных галлюцинаций? Только то, что из глаз субъекта в этом случае реально излучаются определенные порции света, что и регистрируют фотоматериалы. Именно это и позволяет вновь сказать: мы действительно видим сны, а не просто думаем, что видим. Иначе говоря, синтезированное мозгом изображение подается на сетчатку глаз и затем вновь воспринимается мозгом. Этому подтверждением является рассмотренный выше эксперимент по выявлению действия функции компенсации в тракте зрения. Именно это и позволяет сказать: сновидения реально возможно заснять на фото-, кино- или видеоматериалы.

Правда, здесь экспериментаторов будут подстерегать новые неожиданности, связанные с иными процессами, нежели просто проявление функции компенсации. Но об этом - в главе, описывающей функции сна и сновидений.

Реальная, выявляемая в эксперименте функция компенсации, позволяет объяснить и другие эффекты, ранее на которые либо не обращали внимания, либо считали происхождение таких эффектов продуктом невнимательности, либо - в эксперименте - отбрасывали подобные факты как ошибочные.

В этой связи хочу привести пример неверной работы функции компенсации за счет ошибки формирования функции отражения. Поскольку в первый класс я поступил, умея не только хорошо, но и очень бегло читать как про себя, так и вслух, то меня часто, с первых же дней учебы вызывали для чтения для всего класса. Однажды, читая сказку Л. Толстого “Медведь-лежебока”, я увидел в книге не “лежебока”, а “желебока”. Как ни старалась Анна Андреевна, моя первая учительница, убедить меня в том, что там записано другое, я не смог это увидеть, и получил, естественно, двойку по чтению.

Этот эффект следует назвать семантической слепотой, т.е. не связанной с состоянием зрительного аппарата, а только с работой мозга в части формирования интегральной функции и, соответственно, функции компенсации. Данный эффект зрения знаком, пожалуй, каждому, так как нередко мы не можем найти упавший к нашим ногам предмет не потому, что он куда-то закатился, а просто не видим его в силу отсутствия соответствующей реакции нашего мозга. Когда же мы заметим упавший предмет, то после этого он “отыскивается” уже мгновенно во второй и в третий раз. Бывает и так, что мы “не замечаем” и большие предметы.

Достаточно наглядным проявлением действия семантической слепоты является то, что мы очень часто не замечаем грамматических или синтаксических ошибок в собственноручно написанном тексте. В то же время в чужом схожем по структуре или смыслу тексте аналогичные ошибки мы обнаруживаем относительно легко. Это и есть проявление семантической слепоты. Объяснение этого состоит в изменении экстравертного характера приема информации трактом зрения (что обычно для приема) на интровертный за счет перестройки психических функций. Позже будут проанализированы случаи проявления семантической слепоты в экспериментах, т.е. это не есть какое-то редкое явление, которое не могло бы быть не замечено. Просто получалось так, что вследствие отсутствия необходимой модели работы, в данном случае - тракта зрения, такие результаты либо никак не были объяснены, либо отбрасывались как ошибочные.

Описанный механизм зрения, в основе которого лежит действие функции компенсации, реально подтверждает, что наш мозг осуществляет синтез, а не просто воспринимает внешнее. Важность этого заключается в том, что процессы синтеза мы обязаны распространить на все процессы, происходящие в мозгу, к какой области бы они ни относились.

Это, безусловно, не означает, что принципы синтеза функции компенсации будут идентичны в механизмах действия различных сенсоров. Так на данном этапе можно сказать однозначно лишь то, что в тракте зрения, осуществляющем, без сомнения, параллельный прием и обработку входной информации, функция компенсации поступает непосредственно на сенсор (сетчатку глаза), что и позволило Крохалеву, в частности, фотографировать галлюцинации. Именно об этом и писал Глезер, выявив on- и off- нейроны.

С учетом того, что нам удалось достаточно объективно доказать наличие и принцип действия функции компенсации в тракте зрения, можно дать и вполне обоснованное заключение тому явлению, которое описал Ратнер: обратному восприятию уровня освещенности в тракте зрения по сравнению с тем, как это принято в технических системах.

Диапазон яркостей освещенности, с которым нам приходится сталкиваться в жизни, необычайно широк. С этим сталкиваются, например, фотографы, подбирая под конкретные условия съемки подходящую светочувствительность фотоматериалов. Если бы природа “спроектировала” фоторецепторы тракта зрения подобно тому, как это принято в технике, то это означало бы, что практически невозможно было бы проводить фоторецепторную компенсацию при больших яркостях. Именно поэтому восприятие достаточно большой яркости, “принятой” природой за максимально допустимый предел (с точки зрения обеспечения выживания) стало соответствовать отсутствию фототока в on- нейроне. При этом за счет механизма компенсации еще возможно обеспечить максимальную разрешающую способность, соответствующую выделению (восприятию) изменения освещенности в пределах одного фотона.

Функция компенсации, обеспечивая практически полную компенсацию внешнего светового возбуждения, позволяет перевести фоторецептор в такое состояние, когда он становится практически полностью невозбужденным. По-видимому, уровень компенсации ограничивается на таком значении, когда не компенсированной остается только та часть внешнего возбуждения, которая соответствует воздействию только одного фотона. В этом случае малейшие отклонения в освещенности воспринимаемого объекта будут немедленно выявляться. Это и позволяет понять, зачем природа создала такой чувствительный прибор, который выявляет именно один фотон света. Более интенсивные яркости демпфируются за счет диафрагмирования входного диаметра зрачка или дополнительной шторкой, образуемой веками. Этим самым природа обеспечила формирование некоторого максимального эталона освещенности, при котором наш глаз еще видит.

Проанализированная модель механизма зрения позволяет также понять, почему зрение быстрее адаптируется при нашем переходе из затемненного помещения в светлое и существенно медленнее при обратном переходе. Так, если мы находимся в темном помещении, то возбуждающий и тормозящий нейроны (on - off -) проводят максимальный ток ионов. Это соответствует восприятию трактом зрения темноты.

При нашем выходе в светлое помещение возбуждающий нейрон сразу же прекращает пропускание тока, что в итоге соответствует восприятию удвоенного светового потока, и глаз на короткое время прекращает различать предметы. Механическая адаптация, имеющаяся в зрительном приборе (глазе) позволяет ослабить эффект “ослепления” за счет сокращения диаметра входного отверстия (диафрагмирования) и использования в качестве шторки век глаза. В итоге совокупного действия указанных механизмов восстановление нормального восприятия окружающей обстановки происходит достаточно быстро. Это значит, что при контроле вызванного потенциала в этом случае данный сигнал будет иметь крутой передний фронт и последующий сравнительно быстрый экспоненциальный спад из-за формирования новой функции компенсации.

При первоначальном нашем нахождении в достаточно светлом помещении оба нейрона находятся в почти непроводящем состоянии. Поэтому при переходе в темное помещение степень восприятия темноты как бы удваивается. Если же учесть, что функция компенсации, как это было показано в эксперименте, в этом случае хранится достаточно долго, то это приводит к затягиванию ощущения сильной темноты. Вызванный потенциал в этом случае будет иметь форму нарастающей экспоненты, т.е. обратный по отношению к первому случаю. Это, таким образом, объясняет непрерывность восприятия киноизображения.

Теперь можно по-новому взглянуть на тот факт, о котором упомянул В. Д. Глезер, говоря, что Х -нейроны сетчатки имеют “ естественную возможность отвечать в обе стороны от нуля на изменения интенсивности света ” (В. Д. Глезер “Зрение и мышление”, Л., “Наука”, 1985 г., стр. 172).

Мы выяснили, что “измерительный прибор” – механизм зрения - это однополярный измерительный инструмент. Человек же, по-видимому, филогенетически “сумеречное животное”, т.е. в ходе эволюции при своем возникновении человек имел наибольшую активность в сумеречное время дня (утро и вечер). Это давало ему определенные преимущества, например, во время охоты. Для “усовершенствования” функции отражения Создатель “позаботился” об упрощении механизма формирования интегральной функции, сместив своеобразный нуль этой функции в сторону лучшего восприятия серых тонов при малой освещенности. Это соответствует тому принципу, используемому в технике, когда с использованием однополярного прибора осуществляют измерение разнополярных сигналов.

Следовательно, в исходном состоянии on- и off- нейроны имеют некоторое постоянное - начальное - протекание тока, что не входит в формируемую функцию отражения, но при этом возникает возможность иметь максимальную чувствительность механизма зрения именно в “серое” время суток. Благодаря этому свойству наши сны преимущественно нецветные.

Именно благодаря описанному свойству (начального смещения) у некоторых людей могла появиться необычайно высокая разрешающая способность видеть в почти полной темноте: у таких людей из-за случайного отклонения это начальное смещение несколько меньше, чем у других. Этим же фактом объясняются случаи “куриной слепоты” у других людей: в этом случае начальное смещение в силу каких-либо причин (болезнь или врожденное качество) больше, что и снижает чувствительность механизма зрения в вечернее и ночное время.

Кстати, необходимость принципиального характера в синтезе негативного по отношению к внешнему сигналу (компенсирующего) воздействия, подаваемого на сенсор, позволяет сделать неожиданное, может быть, заключение: зрение и есть уже процесс мышления (аналогично: слух, вкусовые ощущения и т.п.).

Потребность в характере функции отражения и возможность ее формирования у разных организмов различны. Чем выше уровень организации, тем сложнее функция отражения и, в данном случае, механизм зрения - цветопередача, бинокулярность и др.

В книге Джеймса Грегга “Опыты со зрением в школе и дома”, М., “Мир”, 1970 г. (James R. Gregg, “EXРERIMENTS IN VISUAL SCIENSE FOR HOME AND SCHOOL”, Los Angeles College of Oрtometry, 1966) приведено и описано много интересных эффектов зрения, которые также объясняются на основе информационно-отражательной модели. Сам Дж. Грегг не дает какого-нибудь объяснения наблюдаемым эффектам, оправдываясь слабой изученностью мозга.



Поделиться:


Последнее изменение этой страницы: 2021-05-27; просмотров: 51; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.145.8.42 (0.024 с.)