Здесь уместно спросить, какова природа трехзначной логики без закона исключенного третьего? Как образуется такая логика?



Мы поможем в написании ваших работ!


Мы поможем в написании ваших работ!



Мы поможем в написании ваших работ!


ЗНАЕТЕ ЛИ ВЫ?

Здесь уместно спросить, какова природа трехзначной логики без закона исключенного третьего? Как образуется такая логика?



Ответ состоит в следующем: эту логику образует ряд определений, которые можно рассматривать как произвольно вводимые аксиомы; сами по себе они не обладают непосредственной или интуитивно ясной общезначимостью. Они целенаправленно строятся таким образом, чтобы при соответствующей интерпретации некоторые формулы выражали эмпирические факты квантовой механики. Это пропозициональное исчисление, специально приспособленное для квантовой механики. Но какой смысл мы вкладываем в понятие "логики", если такого рода пропозициональное исчисление называть логикой?

Логика характеризуется тем, что она может быть сформулирована аксиоматически. Вводятся аксиомы, а затем по определенным правилам из этих аксиом выводятся теоремы. В основании традиционной логики лежат представления о том, что ее аксиомы выражают общезначимые выводы. Например, в силлогистике - это модус Barbara, в пропозициональной логике - "если A, то A" и т.д. По определению, идущему от Лейбница, общезначимость логических аксиом означает, что они истинны во всех возможных мирах. То же самое имеют в виду, когда говорят, что предметом логики являются тавтологии, то есть высказывания, которые ничего не говорят о том конкретном мире, в котором мы находимся. К этому можно было прибавить определение Лоренцена, который полагал, что логика есть дисциплина, изучающая правила, по которым должно строиться любое исчисление. Это определение, как теперь ясно, также связано с традиционным пониманием логики.

Но дополнительность некоторых высказываний в современной физике выражает определенную характеристику именно физического мира, присущего ему способа бытия, а не свойство, присущее всем возможным мирам. Следовательно, правила пропозиционального исчисления, которые приспособлены для того, чтобы выражать некоторые характеристики данного физического мира, не могут претендовать на то, чтобы считаться правилами любого исчисления или тавтологии. Следовательно, нельзя называть подобную аксиоматически построенную систему пропозиционального исчисления логикой, если вообще в каком-либо смысле требовать от определений, чтобы они были адекватными [108]. Критерий адекватности заключается в том, что элементы произвольности в определениях понятий должны устраняться, когда эти понятия приобретают универсальное значение. Не признавая такого критерия, нельзя говорить и об использовании квантовой механики в качестве основания для построения новой логики, поскольку тогда можно было бы утверждать, что достаточно чьего-либо произвольного желания, чтобы назвать данное пропозициональное исчисление пропозициональной логикой. Но такого рода произвольное утверждение не только не могло бы иметь никакого философского смысла, но и вообще не имело бы отношения к проблеме исследования новых форм знания и мышления как такового.

Далее, даже если оставить в стороне всю эту аргументацию, отказ от закона исключенного третьего (TND), к которому, как могло бы показаться, побуждает рассмотрение эксперимента Юнга, что отражено в трехзначном пропозициональном исчислении, никак нельзя считать причиной для изменения традиционного определения логики. Сегодня мы уже знаем, что логический вывод, основанный на этом законе, не может быть признан истинным для любых исчислений или в любых возможных мирах, а следовательно, этот закон не является фундаментальным законом логики [109].

Подход Миттельштедта

Другая попытка представить пропозициональное исчисление квантовой механики как квантовую логику была сделана П.Миттельштедтом в его книге "Философские проблемы современной физики" [110]. В основу его попытки положены идеи так называемой диалогической логики Лоренцена. Вкратце они могут быть сведены к следующему [111] .

Предположим, что мы знаем, как доказать простые высказывания ("луна круглая", "погода хорошая" и т.п.). Пусть некто P утверждает, что если A, то B (A B). Его оппонент О мог бы оспорить это утверждение. Конечно, это произойдет только в том случае, если сам О доказывает A, и затем требует, чтобы P в свою очередь доказал B, поскольку A B сводится к утверждению, что если существует A, то существует и B. Если в этом споре побеждает P, то между ними состоится диалог, который мы представим следующей схемой:

P O



Последнее изменение этой страницы: 2021-04-04; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.236.110.106 (0.008 с.)