Кроветворение у новорождённого 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Кроветворение у новорождённого



Основным источником образования всех видов клеток крови, кроме лимфоцитов, у новорожденного является костный мозг. В это время и плоские, и трубчатые кости заполнены красным костным мозгом. Однако уже с первого года жизни начинает намечаться частичное превращение красного костного мозга в жировой (желтый), а к 12-15 годам, как и у взрослых, кроветворение сохраняется в костном мозге только плоских костей. Лимфоциты во внеутробной жизни вырабатываются лимфатической системой, к которой относятся лимфатические узлы, селезенка, солитарные фолликулы, групповые лимфатические фолликулы (пейеровы бляшки) кишечника и другие лимфоидные образования.

Моноциты образуются в ретикулоэндотелиальной системе, включающей ретикулярные клетки стромы костного мозга, селезенки, лимфатических узлов, звездчатые ретикулоэндотелиоциты (клетки Купфера) печени и гистиоциты соединительной ткани.

Периоду новорожденности свойственна функциональная лабильность и быстрая истощаемость костного мозга. Под влиянием неблагоприятных воздействий: острых и хронических инфекций, тяжелых анемий и лейкозов - у детей раннего возраста может возникнуть возврат к эмбриональному типу кроветворения.

Регуляция гемопоэза осуществляется под влиянием нервных и гуморальных факторов. Существование прямой связи между нервной системой и органами кроветворения может быть подтверждено наличием иннервации костного мозга.

Постоянство морфологического состава крови является результатом сложного взаимодействия процессов кроветворения, кроворазрушения и кровораспределения

Кроветворение у плода

Впервые кроветворение обнаруживается у 19-дневного эмбриона в кровяных островках желточного мешка, которые окружают со всех сторон развивающийся зародыш. Появляются начальные примитивные клетки - мегалобласты. Этот первый кратковременный период гемопоэза, преимущественно эритропоэза, носит название мезобластического, или внеэмбрионального, кроветворения.

Второй (печеночный) период начинается после 6 нед и достигает максимума к 5-му месяцу. Наиболее отчетливо выражен эритропоэз и значительно слабее - лейко- и тромбоцитопоэз. Мегалобласты постепенно замещаются эритробластами. На 3 - 4-м месяце эмбриональной жизни в гемопоэз включается селезенка. Наиболее активно как кроветворный орган она функционирует с 5-го по 7-й месяц развития. В ней осуществляется эритроцито-, гранулоцито- и мегакариоцитопоэз. Активный лимфоцитопоэз возникает в селезенке позднее - с конца 7-го месяца внутриутробного развития.

К моменту рождения ребенка прекращается кроветворение в печени, а селезенка утрачивает функцию образования клеток красного ряда, гранулоцитов, мегакариоцитов, сохраняя функцию образования лимфоцитов.

На 4 - 5-м месяце начинается третий (костномозговой) период кроветворения, который постепенно становится определяющим в продукции форменных элементов крови.

Таким образом, в период внутриутробной жизни плода выделяют 3 периода кроветворения. Однако различные его этапы не строго разграничены, а постепенно сменяют друг друга.

Соответственно различным периодам кроветворения (мезобластическому, печеночному и костномозговому) существует три разных типа гемоглобина: эмбриональный (НЬР), фетальный (HbF) и гемоглобин взрослого (НЬА). Эмбриональный гемоглобин (НЬР) встречается лишь на самых ранних стадиях развития эмбриона. Уже на 8 - 10-й неделе беременности у плода 90 - 95% составляет HbF, и в этот же период начинает появляться НЬА (5 - 10%). При рождении количество фетального гемоглобина варьирует от 45 до 90%. Постепенно HbF замещается НЬА. К году остается 15% HbF, а к 3 годам количество его не должно превышать 2%. Типы гемоглобина отличаются между собой аминокислотным составом.

Кровь детей первого года жизни. В этом возрасте продолжается постепенное снижение числа эритроцитов и уровня гемоглобина. К концу 5—6-го месяца наблюдаются наиболее низкие показатели. Гемоглобин снижается до 120—115 г/л, а количество эритроцитов — до 4,5—3,7-1012/л. Цветовой показатель при этом становится меньше 1. Это явление физиологическое и наблюдается у всех детей. Оно обусловлено быстрым нарастанием массы тела, объема крови, недостаточным поступлением с пищей железа, функциональной несостоятельностью кроветворного аппарата. Макроцитарный анизоцитоз постепенно уменьшается и диаметр эритроцитов становится равным 7,2—7,5 мкм. Полихроматофилия после 2—3 мес не выражена. Величина гематокрита уменьшается параллельно снижению количества эритроцитов и гемоглобина с 54% в первые недели жизни до 36% к концу 5—6-го месяца.
Количество лейкоцитов колеблется в пределах 9—10-109/л. В лейкоцитарной формуле преобладают лимфоциты. С начала второго года жизни до пубертатного периода морфологический состав периферической крови ребенка постепенно приобретает черты, характерные для взрослых. В лейкограмме после 3—4 лет выявляется тенденция к умеренному нарастанию числа нейтрофилов и уменьшению количества лимфоцитов. Между пятым и шестым годом жизни наступает 2-й перекрест числа нейтрофилов и лимфоцитов в сторону увеличения количества нейтрофилов.

24. Схема постэмбрионального кроветворения. Вклад отечественных и зарубежных ученых в становлении унитарной теории кроветворения. Эритроцитопоэз. Взаимодействие стромальных и гемопоэтических элементов. Гранулоцитопоэз. Мегакариоцитопоэз. Моноцитопоэз. Лимфоцитопоэз.

Постэмбриональный гемопоэз – физиологическая ргенерация крови (клеточное обновление), которая компенсирует физиологическое разрушение дифференцированных клеток.

Миелопоэз – происходит в миелоидной ткани, расположенной в эпифизах трубчатых и полостях многих губчатых костей. Здесь развиваются форменные элементы крови: эритроциты, гранулоциты, моноциты, кровяные пластинки, предшественники лимфоцитов. В миелоидной ткани находят СКК и СК соединительной ткани. Предшественники лимфоцитов постепенно мигрируют и заселяют тимус, селезенку, лимф-кие узлы и т.д.

Лимфопоэз происходит в лимфоидной ткани, которая имеет несколько разновидностей, представленных в тимусе, селезенке, лимфатических узлах. Она выполняет основные функции: образовании Т- и В-лимфоцитов, иммуноцитов. Миелоидная и лимфоидная ткани являются разновидностями соединительной ткани, п.э. в них представлены 2 основные клеточные линии – клетки ретикулярной ткани и гемопоэтические.

В основе схемы кроветворения лежит унитарная теория. Унитарная теория: родоначальницей всех клеток лежит 1 стволовая клетка, образующая 0,15 трлн клеток в сутки (250 млрд – эритроцитов, 250 млрд - лейкоцитов).

Схему делят на 6 классов: 1) полипотентные клетки – предшественники СКК – лимфоцитоподобные, гетерогенные. Подразделяются на про-СКК (начинают пролиферировать при трансплотации), др.-СКК. кр.-СКК – пролиферируют кратковременно. Мультипотентны. МСК – мезнхимальные стоволовые клетки – микроокружение СКК, поддерживают и регулируют кроветворение.

2) Частично детерминированные клетки – предшественники (полустволовые клетки): 2 типа – КОЕ (колония образующая единица)-М миелопоэза (эритроциты), КОЕ-Л лимфопоэза (белые клетки).

3) Унипотентные КП (клетки предшественники) (олигопотентные): КОЕ-М миелопоэза – образует линии КОЕ-Г (гранулоциты), КОЕ-М (макрофаги), КОЕ-Э (эритроциты), КОЕ-Мгк (мегакариоциты), КОЕ-Т (тучные клетки). КОЕ-Л лимфопоэза: КП-В лимфоцитов, КП-Т лимфоцитов, КП-натуральные киллеры, КП-дендритные клетки.

4) Пролиферирующие клетки – морфологически распознаваемы клетки. Бластные клетки.

5) Созревающие клетки – происходит дифференцировка клеток. Клетки уменьшаются в размерах, изменяется форма ядра, меняется цвет цитоплазмы и ядра, появляется специфическая зернистость.

6) Зрелые классы: бласттрансформация – только для Т- и В-лимфоцитов (взаимодействие рецепторного поля в 5 классе) обмен рецепторными полями.

Основоположником современной унитарной теории кроветворения является отечественный гистолог Максимов (работал на кафедре гистологии ВМА в С-Петербурге). Еще в 1907 году Максимов утверждал, что все клетки крови развиваются из единой одной и той же родоначальной клетки; мало того, он назвал эту клетку — морфологически это малый лимфоцит. Однако имеющиеся в то время методы исследований не позволяли экспериментально доказать верность этой теории. Максимов в ходе гемоцитопоэза клетки крови подразделял на 4 группы:
1 группа — клетки с неограничанной возможностью превращений, т.е. родоначальная клетка, способная развиваться и превратиться в любой форменный элемент крови.
2 группа — клетки с частично ограниченный способностью развиваться в ту или иную форму клеток крови.
3 группа — клетки со строго ограничанной возможностью развития.
4 группа — клетки крови не способные изменяться.
Последующие исследования показали верность унитарной теории кроветворения Максимова. Отечественные ученые Кассирский, Алексеев внесли существенный вклад в области цитохимических и электронно-микроскопических исследований клеток крови в разных стадиях гемоцитопоэза. Канадские исследователи Till и Mc-Culloch при помощи оригинальной серии экспериментов со смертельно облученными мышами доказали существование стволовых кроветворных клеток (СКК).
Современная схема кроветворения в варианте, который Вы будете изучать, составлена в 1973 году Чертковым и Воробьевым. Согласно этой схеме все клетки крови в процессе гемцитопоэза подразделены на 6 классов.

Эритроцитопоэз начинается со стволовой кроветворной клетки. Через стадию колониеобразующей мультипотентной клетки (КОЕТЭММ) формируются бурстобразующая (БОЭ-Э) и далее колониеобразующая единица эритроцитов (КОЕ-Э). Клетки этих колоний чувствительны к факторам регуляции пролиферации и дифференцировки. Например, эритропоэтин, вырабатываемый клетками почки, стимулирует пролиферацию и дифференцировку клеток в эритробласты. В IV-й класс включаются базофильный, полихроматофильный и оксифильный эритробласты. Проэритроциты, потом ретикулоциты составляют V-й класс и, наконец, формируются эритроциты (VI-й класс). В эритропоэзе на стадии оксифильного эритробласта происходит выталкивание ядра. В целом цикл развития эритроцита до выхода ретикулоцита в кровь продолжается до 12 суток. Общее направление эритропоэза характеризуется следующими основными структурно-функциональными изменениями: постепенным уменьшением размеров клетки, накоплением в цитоплазме гемоглобина, редукцией органелл, снижением базофилии и повышением оксифилии цитоплазмы, уплотнением ядра с последующим его выделением из состава клетки. В эритробластических островках эритробласты поглощают путем микропиноцитоза железо, поставляемое макрофагами, для синтеза гемоглобина.

  Развитие эритроцитов происходит в миелоидной ткани красного костного мозга. В периферическую кровь поступают только зрелые эритроциты и немного ретикулоцитов. Состояние, при котором содержание гемоглобина в крови значительно снижено, называется анемией. Оно бывает связано либо с уменьшением числа эритроцитов, либо с понижением содержания гемоглобина в них, и возникает в результате ряда причин: генетических (например, серповидноклеточная анемия, связанная с нарушением синтеза гемоглобина и распадом эритроцитов), кровопотери, воздействия гемолитических ядов, вызывающих распад эритроцитов, дефицита железа или витамина B12. В норме потребность в эритроцитах обеспечивается за счет размножения клеток IV-V-ro классов. Этот процесс называется гомопластическим гемопоэзом. При резком дефиците эритроцитов, вызванном кровопотерей или другими факторами, гомопластического гемопоэза оказывается недостаточно. Эритроциты начинают развиваться путем деления клеток I-III-го классов. Такой процесс называется гетеропластическим гемопоэзом.

Гранулоцитопоэз. Образование гранулоцитов происходит в миелоидной ткани красного костного мозга. Исходная стволовая клетка превращается в мультипотентную клетку — предшественник миелопоэза (КОЕ-ГЭММ) и далее под воздействием колониестимулирующих факторов дифференцируется в общую родоначальную клетку для гранулоцитов и моноцитов (КОЕ-ГМн). В дальнейшем в результате дивергенции возникают родоначальные клетки для гранулоцитов (КОЕ-Гн), которые дифференцируются в идентифицируемые миелобласты (IV-й класс клеток). В ряду дальнейшей клеточной дифференцировки (V-й класс клеток) различают стадии: промиелоцита, миелоцита, метамиелоцита. Начиная со стадии промиелоцита, клетки подразделяются на 3 разновидности: нейтрофильные, эозинофильные, базофильные. Более отчетливо это подразделение можно провести на стадии миелоцитов, когда в клетках накапливается достаточное количество специфической зернистости. До стадии миелоцитов включительно клетки гранулоцитопоэза делятся митозом. Метамиелоциты митозом уже не делятся. В этих клетках ядро приобретает вначале палочковидную, а затем сегментированную форму. Общее направление дифференцировки клеток гранулопоэза характеризуется: постепенным уменьшением размеров клетки, снижением базофилии цитоплазмы, появлением в цитоплазме специфических гранул, уменьшением размеров ядра, появлением сегментированности ядра и его уплотнением, сдвигом ядерно-цитоплазменного отношения в сторону преобладания размеров цитоплазмы над размерами ядра. В периферическую кровь поступают зрелые гранулоциты (VI-й класс клеток) — нейтрофилы, эозинофилы и базофилы, а также небольшое количество малодифференцированных (юных) гранулоцитов. Физиологическая регенерация обеспечивается делением преимущественно клеток V-ro класса — миелоцитов.

Мегакариобласт — крупная полиплоидная клетка. По мере увеличения степени плоидности до 32-64 п она приобретает гигантские размеры. Наиболее дифференцированная клетка этого ряда — мегакариоцит — имеет базофильную цитоплазму с многочисленными азурофильными гранулами. Происходит значительное увеличение размеров ядра вследствие его полиплоидизации и сегментации. Мегакариоциты находятся в миелоидной ткани красного костного мозга. От поверхности цитоплазмы этих клеток по каналам агранулярной эндоплазматической сети отшнуровываются небольшие фрагменты, превращающиеся в кровяные пластинки. Последние попадают в кровяное русло. Основное проявление дифференцировки клеток при тромбоцитопоэзе сводится к увеличению размеров мегакариобластов, полиплоидизации, появлению в цитоплазме азурофильной зернистости, отшнуровыванию фрагментов цитоплазмы путем образования впячиваний плазмолеммы, отделению от мегакариоцитов кровяных пластинок, попадающих в

 

Моноцитопоэз. Моноцитопоэз — образование моноцитов — происходит в красном костном мозге из стволовых клеток через стадии КОЕ-ГЭММ, далее — КОЕ-ГМо, затем КОЕ-Мо, монобласта, промоноцита и моноцита. Конечной стадией дифференцировки клеток моноцитарного ряда является не моноцит, а макрофаг (мононуклеарный фагоцит), который находится вне сосудистого русла. Дифференцировка клеток при моноцитопоэзе характеризуется: увеличением размеров клетки, приобретением ядра бобовидной формы, снижением базофилии цитоплазмы, превращением моноцита в макрофаг.

Лимфоцитопоэз и иммуноцитопоэз. Лимфоидная ткань у человека имеется в составе лимфатических узлов, селезенки, миндалин, аппендикса и в других лимфоидных образованиях по ходу пищеварительного тракта. В лимфоидной ткани происходит лимфопоэз. Исходными клетками лимфопоэза являются стволовые клетки красного костного мозга. Через стадию мультипотентных клеток (КОЕ-Л) они дифференцируются в родоначальные про-Т- и про-В-лимфобласты и далее в Т- и В-лимфобласты, Т- и В-пролимфоциты и Т- и В-лимфоциты. В лимфоцитопоэзе в тимусе возникают субпопуляции Т-клеток с различными рецепторами (так называемая антигеннезависимая пролиферация и дифференцировка). Т-лимфоциты участвуют в формировании клеточного иммунитета. Другой ряд дифференцировки в лимфопоэзе приводит к образованию из В-лимфоцитов через стадии плазмобласта и проплазмоцита — плазматических клеток (плазмоцитов). Эти клетки вырабатывают антитела, обеспечивая гуморальный иммунитет. Подробнее образование иммунокомпетентных клеток и их участие в развитии воспаления рассматриваются ниже. Из лимфобластов образуются большие, средние и малые лимфоциты. Этот ряд дифференцировки сопровождается уменьшением размеров клеток, уплотнением ядер, снижением митотической активности. Малые лимфоциты способны к "бласттрансформации" — своеобразной дедифференцировке с последующей повторной их дифференцировкой. Явление бласттрансформации открыто А.А. Максимовым (1902).

25. Собственно соединительные ткани. Морфофункциональная характеристика. Классификация и источники развития.

 

Соединительные ткани — это комплекс мезенхимных производных, состоящий из клеточных дифферонов и большого количества межклеточного вещества (волокнистых структур и аморфного вещества), участвующих в поддержании гомеостаза внутренней среды и отличающихся от других тканей меньшей потребностью в аэробных окислительных процессах. Соединительная ткань составляет более 50 % массы тела человека. Она участвует в формировании стромы органов, прослоек между другими тканями, дермы кожи, скелета. Полифункциональный характер соединительных тканей определяется сложностью их состава и организации.

ПРИЗНАКИ СОЕД ТКАНИ:

1. Развивается из мезенхиы

2. Хорошо развито межклеточное вещество

3. Составляет больше 50% от массы тела

Функции соединительных тканей. Соединительные ткани выполняют различные функции: трофическую, защитную, опорную (биомеханическую), пластическую, морфогенетическую

Классификация: 1. Волокнистые соединительные ткани: а) рыхлая

                                                               б) плотная: (оформленная и неоформленная)
2. Соединительные ткани со специальными свойствами: а) ретикулярная ткань;
                                                                                       б) жировая ткань;
                                                                                       в) слизисто-студенистая ткань;
                                                                                       г) пигментная ткань;
                                                                                       д) эндотелий.

 

26. Рыхлая волокнистая соединительная ткань. Морфофункциональная характеристика клеточных элементов и межклеточного вещества.

 

I. Рыхлая неоформленная волокнистая соединительная ткань (рвст)-собственная вст (клетчатка)- окружает кровеносные и лимфо- сосуды, нах. под баз.мембраной эпителия, образует перегородки внутри паренхиматозных органов, образует слои в оболочках полых органов.
В эмбриональном периоде рвст образуется из мезенхимы.


Рвст состоит из клеток и межкл. вещ-ва, причем их соотношение примерно одинаково.


Клетки Рвст очень разнообразны:

 - клетки фибробластического дифферона (стволовая и полустволовая клетка, малоспециализированные и дифференцированный фибробласты, фиброцит, миофибробласт, фиброкласт — это одни и те же клетки в разных «возрастах».),

- макрофаг,

-тучная клетка,

-плазмоцит,

-адвентициальная клетка,

-перицит,

-липоцит,

-меланоцит,

-лейкоциты,

-ретикулярная клетка.

 



Поделиться:


Последнее изменение этой страницы: 2021-02-07; просмотров: 70; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.191.135.224 (0.025 с.)