![]() Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву ![]() Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Начальные понятия теории множествСодержание книги
Поиск на нашем сайте
Любое понятие дискретной математики можно определить с помощью понятия множества. Под множеством понимают объединение в одно общее объектов, хорошо различаемых нашей интуицией или нашей мыслью. Объекты, которые образуют множество, будем называть элементами множества и обозначать малыми буквами латинского алфавита. Множество и его элементы обозначаются следующим образом: А = { a1, a2, a3 } – множество, состоящее из трех элементов; А = { a1, a2, … } – множество, состоящее из бесконечного числа элементов. Множество может состоять из элементов, которые сами являются множествами. Нужно различать элемент a и множество, состоящее из единственного элемента a. Пример. Множество А = {1, 2} состоит из двух элементов 1, 2; но множество { А } состоит из одного элемента А. Если элемент a принадлежит множеству А, это записывается следующим образом: a Î А. Если элемент a непринадлежит множеству А, то записывают так: a Ï А. Если какое-либо множество А включено в другое множество В, то используется запись А Ì В. Множество, содержащее конечное число элементов, называется конечным, если множество не содержит ни одного элемента, то оно называется пустым и обозначается Æ. Принято считать, что пустое множество является подмножеством любого множества: Æ Í А, где А – любое множество. Таким образом, всякое множество содержит в качестве своих подмножеств пустое множество и само себя. Пример. 1. Множество корней уравнения sin x = 2 является пустым. 2.Пусть А1 – множество простых чисел, А 2 – множество целых чисел, a = 4. Тогда a Î А 2, a Ï А 1. Множество считается заданным, если каким-либо образом указано некоторое свойство, которым обладают все его элементы и не обладают никакие другие объекты. Множество может быть задано различными способами: перечислением элементов (конечные множества) или указанием их свойств (при этом в обоих случаях при задании множеств используют фигурные скобки). Примеры задания множеств. 1. Множество M цифр десятичного алфавита можно задать в виде: M = {0, 1,..., 9} или M = { х │ х – целое, 0 £ х £ 9}, где справа от вертикальной черты указывают свойство элементов этого множества. Множество M чётных чисел можно записать в виде: M = { х│х – чётное число}. 2. Если R – множество точек числовой прямой, то R n – множество точек n -мерного арифметического пространства; в частности, R2 – множество точек плоскости, R3 – множество точек пространства трех измерений.
Для каждого множества М существует множество, элементами которого являются подмножества множества М и только они. Такое множество будем называть семейством множества М или булеаном этого множества и обозначать В(М), а множество М будем называть универсальным (универсумом или пространством) и обозначать 1 или U. Множество М (универсальное) не должно быть ýже объединения рассматриваемых множеств, т. е. оно должно быть равно или содержать объединение рассматриваемых множеств. Пример. Пусть множество А = {1, 2} состоит из двух элементов 1, 2. Тогда множество В(A) включает в себя пустое множество Æ, два одноэлементных множества {1} и {2} и само множество А = {1, 2}, т. е. В(A) = {Æ, {1}, {2}, {1, 2}}. Мы видим, что множество В(A) состоит из четырех элементов (4 = 22). Приведем стандартные обозначения для некоторых наиболее употребительных числовых множеств: N – множество натуральных чисел (иногда его начинают с 1, иногда с 0; обычно это оговаривается); Р – простые числа; Z – множество целых чисел (положительные, отрицательные и 0); R – множество действительных чисел. Очевидное соотношение: N Í Z Í R. Рассмотрим методы получения новых множеств из уже существующих на примере пространства или множества U, определив в нём 4 операции над множествами A и B: объединение, пересечение, разность, дополнение. Операции над множествами Объединением А и В называется множество А È В, все элементы которого являются элементами хотя бы одного из множеств А или В: А È В = { x ç x Î А и / или x Î В }. Из определения следует, что А Í А È В и В Í А È В. Аналогично определяется объединение нескольких множеств. Пример. 1. Пусть А = {4, 5, 6}, В = {2, 4, 6}. Тогда А È В = {2, 4, 5, 6}. 2. Пусть А – множество чисел, которые делятся на 2, а В – множество чисел, которые делятся на 3: А = {2, 4, 6, …}, В = {3, 6, 9, …}. Тогда А È В – множество чисел, которые делятся на 2 или на 3: А È В = {2, 3, 4, 6, 8, 9, 10, …}. Пересечением множеств А и В называется множество А Ç В, все элементы которого являются элементами обоих множеств А и В: А Ç В = { x ç x Î А и x Î В }. Из определения следует, что А Ç В Í А, А Ç В Í В и А Ç В Í А È В. Аналогично определяется пересечение нескольких множеств.
Пример. 1. Пусть А = {4, 5, 6}, В = {2, 4, 6}. Тогда А Ç В = {4, 6}. 2. Пусть А – множество чисел, которые делятся на 2, а В – множество чисел, которые делятся на 3: А = {2, 4, 6, …}, В = {3, 6, 9, …}. Тогда А Ç В – множество чисел, которые делятся и на 2, и на 3: А È В = {6, 12, 18, …}. Может оказаться, что множества не имеют ни одного общего элемента. Тогда говорят, что множества не пересекаются или что их пересечение – пустое множество. Пример. Пусть А = {1, 2}, В = {2, 3}, C = {3, 4}. Тогда А Ç В Ç C = Æ. Разностью (относительным дополнением) множества В до множества А называется множество А \ В, все элементы которого являются элементами множества А, но не являются элементами множества В: А \ В = { x ç x Î А и x Ï В }. Пример. 1. А = {4, 5, 6}, В = {2, 4, 6}. А \ В = {5}, В \ А = {2}. 2. А = {2, 4, 6, …}, В = {3, 6, 9, …}. Тогда А \ В – множество чисел, которые делятся на 2, но не делятся на 3, а В \ А – множество чисел, которые делятся на 3, но не делятся на 2: А \ В = {2, 4, 8, 10, 14, …}. В \ А = {3, 9, 15, 21, 27, …}. Симметрической разностью множеств А и В называется множество А + В: А + В = (А \ В) È (В \ А). Пример. 1. А = {4, 5, 6}, В = {2, 4, 6}. А \ В = {5}, В \ А = {2}, А + В = {2, 5}. 2. А = {2, 4, 6, …}, В = {3, 6, 9, …}, А \ В = {2, 4, 8, 10, 14, …}. В \ А = {3, 9, 15, 21, 27, …}, А + В = {2, 3, 4, 8, 9, …}. Дополнением ` М множества М является множество ` М = { mi │ mi Ï M }. Пример. Заданы множества А = {1, 2, 5, 6} и В = {2, 3, 4, 6} на универсальном множестве U = {1, 2, 3, 5, 6, 7}. Выполнить операции` А, `В. Решение. В результате выполнения заданных операций получим следующие множества: ` А = {3, 7};` В = {1, 5, 7}. Для конечных множеств существует понятие: мощность множества А – число его элементов. Обозначают мощность множества | А |. Пример. А = {1, 2, 5, 6}, тогда мощность множества | А | = n(А) = 4; |Æ| = 0; |{Æ}| = 1. Также справедливы следующие формулы: для любых множеств А и В Þ | А È В | = | А | + | В | – | А Ç В |, то есть учитываются общие для обоих множеств элементы. Пример. А = {1, 2, 3} | А | = 3; В = {1, 2, 3, 4, 5} | В | = 5, тогда А È В = {1, 2, 3, 4, 5} | А È В | = 5; А Ç В = {1, 2, 3} | А Ç В | = 3, то есть получим равенство: | А È В | = | А | + | В | – | А Ç В | 5 = 3 + 5 – 3. Для конечного множества М мощность его булеана | В(М) | равна 2|М|.
|
||||||
Последнее изменение этой страницы: 2020-12-09; просмотров: 133; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.188.175.197 (0.008 с.) |