Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Индуктивность в контуре. СамоиндукцияСодержание книги
Поиск на нашем сайте
Электрический ток, текущий в замкнутом контуре, создает вокруг себя магнитное поле, индукция которого, по закону Био-Савара-Лапласа, пропорциональна току. Сцепленный с контуром магнитный поток Ф поэтому пропорционален току I в контуре: Ф=LI, где коэффициент пропорциональности L называется индуктивностью контура. При изменении силы тока в контуре будет изменяться также и сцепленный с ним магнитный поток; следовательно, в контуре будет индуцироваться э.д.c. Возникновение э.д.c. индукции в проводящем контуре при изменении в нем силы тока называется самоиндукцией. Единица индуктивности генри (Гн): 1 Гн — индуктивность такого контура, магнитный поток самоиндукции которого при токе в 1 А равен 1 Вб: 1 Гн=1 Вб/А=1 В с/А. Рассчитаем индуктивность бесконечно длинного соленоида. Полный магнитный поток сквозь соленоид (потокосцепление) равен μ μ0N I S/l. L=μμNNS/l т. е. индуктивность соленоида зависит от числа витков соленоида N, его длины l, площади S и магнитной проницаемости μвещества, из которого изготовлен сердечник соленоида. Можно показать, что индуктивность контура в общем случае зависит только от геометрической формы контура, его размеров и магнитной проницаемости той среды, в которой он находится. В этом смысле индуктивность контура — аналог электрической емкости уединенного проводника, которая также зависит только от формы проводника, его размеров и диэлектрической проницаемости среды Применяя к явлению самоиндукции закон Фарадея (см. (123.2)), получим, что э. д. с. самоиндукции εs=-dФ/dt=-d(LI)/dt=-(LdI/dt+IdL/dt) Если контур не деформируется и магнитная проницаемость среды не изменяется, то L=const и εs=-LdI/dt, где знак минус, обусловленный правилом Ленца, показывает, что наличие индуктивности в контуре приводит к замедлению изменениятока в нем. Если ток со временем возрастает, то (dI/dt)>0 и εs <0, т. е. ток самоиндукции направлен навстречу току, обусловленному внешним источником, и замедляет его возрастание. Если ток со временем убывает, то (dI/dt)<0 и εs>0, т. е. индукционный ток имеет такое же направление, как и убывающий ток в контуре, и замедляет его убывание. Таким образом, контур, обладая определенной индуктивностью, приобретает электрическую инертность, заключающуюся в том, что любое изменение тока тормозится тем сильнее, чем больше индуктивность контура. Токи при размыкании и замыкании цепи При всяком изменении силы тока в проводящем контуре возникает э. д. с. самоиндукции, в результате чего в контуре появляются дополнительные токи, называемые стратокамм самоиндукции. Экстратоки самоиндукции, согласно правилу Ленца, всегда направлены так, чтобы препятствовать изменениям тока в цепи, т. е. направлены противоположно току, создаваемому источником. При выключении источника тока экстратоки имеют такое же направление, что и ослабевающий ток. Следовательно,наличие индуктивности в цепи приводит к замедлению исчезновения или установления тока в цепи. Рассмотрим процесс выключения тока в цепи, содержащей источник тока с э.д.с. ε, резистор с сопротивлением R и катушку индуктивностью L. Под действием внешней э. д. с. в цепи течет постоянный ток Iо=ε /R (внутренним сопротивлением источника тока пренебрегаем).В момент времени t=0 отключим источник тока. Ток в катушке индуктивностью L начнет уменьшаться, что приведет к возникновению э.д.c.самоиндукции εs=─LdI/dt, препятствующей, согласно правилу Ленца, уменьшению тока. В каждый момент времени ток в цепи определяется законом Ома I=εs/R или IR=─LdI/dt. (2) Разделив переменные, получим dI/I=─Rdt/L. Интегрируя это уравнение по I (от I0 до I) и t (от 0 до t), находим ln(I/I0)=—Rt/L, или I=I0exp(-t/τ) где τ= L / R — постоянная, называемая временем релаксации. τ есть время, в течение которого сила тока уменьшается в е раз. Таким образом, в процессе отключения источника тока сила тока убывает по экспоненциальному закону и определяется кривой lна рис. 183. Чем больше индуктивность цепи и меньше ее сопротивление, тем больше τ и, следовательно, тем медленнее уменьшается ток в цепи при ее размыкании. При замыкании цепи помимо внешней э. д. с.εвозникает э. д. с. Самоиндукции εs=─LdI/dt, препятствующая, согласно правилу Ленца, возрастанию тока. По закону Ома IR=ε+εs,или IR=ε─LdI/dt. Введя новую переменную u=IR— E, преобразуем это уравнение к виду du/u=─dt/τ где τ-время релаксации. В момент замыкания (t=0) сила тока I=0 u=─ε. Следовательно, интегрируя по и (от -ε до IR-ε) и t (от 0 до t), находим ln[(IR-ε)]/-ε, или I=I0(1-exp(-t/τ)) Рис. 183 гдеIо=ε/R — установившийся ток (при t→ ∞). Таким образом, в процессе включения источника тока нарастание силы тока в цепи задается функцией и определяется кривой 2 на рис. 183. Сила тока возрастает от начального значения I=0 и асимптотически стремится к установившемуся значению I0 =ε / R. Скорость нарастания тока определяется тем же временем релаксации τ= L / R, что и убывание тока. Установление тока происходит тем быстрее, чем меньше индуктивность цепи и больше ее сопротивление. Оценим значение э.д.с. самоиндукции ε, возникающей при мгновенном увеличении сопротивления цепи постоянного тока от Rо до R. Предположим, что мы размыкаем контур, когда в нем течет установившийся ток Iо=ε /R0. При размыкании цепи ток изменяется по формуле (2). Подставив в нее выражение для I0 и τ, получим I=ε exp(-Rt/L)/R0 Э.д.с. самоиндукции εs=─LdI/dt=Rε exp(-Rt/L)/ R0, т. е. при значительном увеличении сопротивления цепи (R/R0 >> 1), обладающей большой индуктивностью, э.д.с. самоиндукции может во много раз превышать э.д.с. источника тока, включенного в цепь. Таким образом, необходимо учитывать, что контур, содержащий индуктивность, нельзя резко размыкать, так как это (возникновение значительных э.д.с. самоиндукции) может привести к пробою изоляции и выводу из строя измерительных приборов. Если в контур сопротивление вводить постепенно, то э.д.с. самоиндукции не достигнет больших значений.
27.Энергия системы проводников с током.Объёмная плотность энергии. I= (ε+ εc)/R; εc=─LdI/dt; IR= (ε─LdI)/dt | (*I)↔ I*I*R*dt= εIdt─LIdI.Отсюда следует, что сторонние силы работают над созданием магнитного поля. dW=LIdI; W=∫LIdI=(L*I*I)/2. Энергия магнитного поля соленоида. L= μ μ0 n*n V, Если соленоид длинный, то V=Vполя. B= μ μ0 nI; W= (μ μ0 n*nVB*B)/2 (μ μ0 μ μ0 n n)=B*BV/(2 μ μ0) Объёмная плотность- ωm=W/V=B*B/(2μ μ0)= μ μ0 H*H/2=BH/2; Wm=∫ ωmdV
|
||||
Последнее изменение этой страницы: 2020-12-09; просмотров: 112; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.144.8.79 (0.008 с.) |