Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Теорема Шеннона-Хартли о пропускной способности каналаСодержание книги Похожие статьи вашей тематики
Поиск на нашем сайте
Выражение для пропускной способности (теорема Шеннона-Хартли) можно записать следующим образом: Если W измеряется в герцах, а логарифм берется по основанию 2, то пропускная способность будет иметь размерность бит/с. Теоретически (при использовании достаточно сложной схемы кодирования) информацию по каналу можно передавать с любой скоростью R< С со сколь угодно малой вероятностью возникновения ошибки. Если же R>C, то кода, на основе которого можно добиться сколь угодно малой вероятности возникновения ошибки, не существует. В работе Шеннона показано, что величины S, N и W устанавливают пределы скорости передачи, а не вероятности появления ошибки. Поскольку мощность детектируемого шума пропорциональна полосе пропускания N=N0W, и если R=C, то S/N0W=Еb/Nо. Тогда
Предел Шеннона
Существует нижнее предельное значение Еb/Nо, при котором ни при какой скорости передачи нельзя осуществить безошибочную передачу информации. С помощью соотношения
можно рассчитать предельное значение. Пусть Тогда (1) При C/W→0 В децибелах Еb/Nо= ‑1,6дБ. Это значение Еb/Nо называется пределом Шеннона. На рис. 1, а предел Шеннона ‑ это кривая зависимости РB от Еb/Nо при k→∞. При Еb/Nо= ‑1,6дБ. данная кривая скачкообразно изменяет свое значение от Рв ~ 1/2 на Рв = 0. В действительности достичь предела Шеннона невозможно, поскольку k возрастает неограниченно, а с ростом к возрастают требования к полосе пропускания и повышается сложность реализации системы. Работа Шеннона ‑ это теоретическое доказательство существования кодов, которые могут улучшить Рв или снизить требуемое значение Еb/Nо от уровней некодированных двоичных схем модуляции до уровней, приближающихся к предельной кривой. При вероятности появления битовой ошибки 10-5 двоичная фазовая манипуляция (BPSK) требует значения Еb/Nо, равного 9,6 дБ (оптимум некодированной двоичной модуляции). Следовательно, за счет использования кодирования, производительность можно повысить на 11,2 дБ по сравнению с некодированной двоичной модуляцией. Оптимальную разработку системы можно наилучшим образом представить как поиск рациональных компромиссов среди различных ограничений и взаимно противоречивых требований. Компромиссы модуляции и кодирования, т.е. выбор конкретных схем модуляции и кодирования для наилучшего использования переданной мощности и ширины полосы, являются очень важными, поскольку имеется много причин для снижения мощности, а также существует необходимость экономии спектра радиочастот.
Энтропия Для разработки системы связи с определенной способностью к обработке сообщений нужна метрика измерения объема передаваемой информации. Шеннон ввел такую метрику H, называемую энтропией источника сообщений (имеющего n возможных выходных значений). Энтропия определяется как среднее количество информации, приходящееся на один выход источника, и выражается следующим образом: бит/выход источника. Здесь рi вероятность i-того выходного значения и Σрi=1. Если сообщение двоичное или источник имеет только два возможных выходных значения с вероятностями р и q=(1-р), выражение для энтропии примет следующий вид: Неоднозначность и эффективная скорость передачи информации Пусть по двоичному симметричному каналу со скоростью 1000 двоичных символов/с происходит передача информации, а априорная вероятность передачи нуля или единицы одинакова. Допустим также, что, вероятность приема единицы равна 1/2 (то же самое ‑ для нуля). В таком случае половина принятых символов должна случайно оказаться правильной, и может создаться впечатление, что система обеспечивает скорость 500 бит/с, хотя на самом деле никакой информации не передается. Одинаково "хороший" прием дает и использование "информации", поступившей из канала, и генерация этой "информации" методом подбрасывания правильной монеты. Утраченной является информация о корректности переданных символов. Для оценки неопределенности в принятом сигнале Шеннон использует поправочный коэффициент, который называет неоднозначностью. Неоднозначность определяется как условная энтропия сообщения X, обусловленная данным сообщением Y, или
где X сообщение, переданное источником, Y ‑ принятый сигнал, Р(Х, У) ‑ совместная вероятность X и Y, а Р{Х|У) ‑ условная вероятность X при приеме Y. Неоднозначность можно представить как неуверенность в передаче X при условии принятия Y. Для канала без ошибок Н{Х|У)=0, поскольку принятие сообщения Y абсолютно точно определяет X. Для канала с ненулевой вероятностью возникновения символьной ошибки Н{Х|У)>0, поскольку канал вносит некоторую неопределенность.
Шеннон показал, что среднее эффективное количество информации Heff в приемнике получается путем вычитания неоднозначности из энтропии источника. Следовательно, Плоскость "полоса-эффективность.
Рис. 3. Плоскость полоса-эффективность. С помощью уравнения (1) можно составить график зависимости нормированной полосы пропускания канала W/C (в Гц/бит/с) от Еb/Nо. Можно показать, что качественно спроектированные системы должны стремиться к работе в области излома кривой компромисса между полосой пропускания и мощностью для идеального (R=С) канала. Характеристики реальных систем часто отличаются от идеальных не более чем на 10 дБ. Наличие излома означает, что в системах, в которых предпринимается попытка уменьшить занимаемую полосу пропускания канала или снизить требуемую мощность, приходится все больше повышать значение другого параметра (что является не очень желательным). Назовем плоскость зависимости C/W от Еb/Nо плоскостью "полоса-эффективность". Ордината R/W ‑ это мера объема данных, которые можно передать через единицу полосы частот за данное время; следовательно, она отображает эффективность использования ресурса полосы пропускания. Независимая переменная Еb/Nо измеряется в децибелах. Кривая R=С ‑это граница, разделяющая область реальных прикладных систем связи и область, в которой такие системы связи теоретически невозможны. Характеристика эффективности полосы пропускания на рис. 3 устанавливает предельные параметры, которые достижимы для прикладных систем. Отметим, что на рис. 3 проиллюстрирована зависимость эффективности использования полосы частот от Еb/Nо для систем с одной несущей. Для систем с множественными несущими эффективность использования полосы частот зависит от разнесения несущих (и типа модуляции). В этом случае компромисс ‑ это насколько разнесены несущие (что приводит к повышению эффективности использования полосы частот) без возникновения неприемлемых помех соседних каналов.
|
|||||||||
Последнее изменение этой страницы: 2020-03-02; просмотров: 569; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.137.162.107 (0.01 с.) |