Квадратурная амплитудная модуляция 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Квадратурная амплитудная модуляция



Квадратурную амплитудную модуляцию (QАМ) можно считать логическим продолжением QРSК, поскольку сигнал QАМ также состоит из двух независимых амплитудно-модулированных несущих. Каждый блок из k бит (k полагается четным) можно разделить на два блока из k/2 бит, подаваемых на цифро-аналоговые преобразователи (ЦАП), которые обеспечивают требующее модулирующее напряжение для несущих. В приемнике оба сигнала детектируются независимо с помощью согласованных фильтров. Передачу сигналов, модулированных QАМ, можно также рассматривать как комбинацию амплитудной (ASK) и фазовой (PSK) манипуляций, откуда альтернативное название амплитудно-фазовая манипуляция (APK). И наконец, ее можно считать двухмерной амплитудной манипуляцией, откуда еще одно название ‑ квадратурная амплитудная манипуляция (QASK).

На рис. 10, а показано двухмерное пространство сигналов и набор векторов сигналов, модулированных 16-ричной QАМ и изображенных точками, которые расположены в виде прямоугольного множества. На рис. 10, б показан канонический модулятор QАМ, На рис. 10, в изображен пример модели канала, в которой предполагается наличие лишь гауссова шума. Сигналы передаются в виде пары (x, у). На модели показано, что координаты сигнальной точки (х, у) передаются по раздельным каналам и независимо возмущаются переменными гауссова шума (nx, ny), каждый компонент которого имеет нулевое среднее и дисперсию N. Можно также сказать, что двухмерная точка сигнала возмущается двухмерной переменной гауссова шума. Если средняя энергия сигнала (среднеквадратическое значение координат сигнала) равна S, тогда отношение сигнал/шум равно S/N. Простейший метод цифровой передачи сигналов через подобные системы ‑ это применение одномерной амплитудно-импульсной модуляции (РАМ) независимо к каждой координате сигнала. При модуляции РАМ для передачи k битов/размерность по гауссову каналу каждая точка сигнала принимает значение одной из 2k равновероятных эквидистантных амплитуд.

 


Заключение

В данном реферате рассмотрены основные задачи разработки системы: получение максимальной скорости передачи информации при одновременном снижении вероятности возникновения ошибки и значения Еb/Nо, сужении полосы пропускания и уменьшении сложности. Компромиссы были изучены эвристически в двух плоскостях: вероятность появления ошибки и эффективность использования полосы частот. Первая явно иллюстрирует компромисс между Еb/Nо и РВ, а также неявно отображает расход полосы пропускания. На второй показан компромисс между R/W и Еb/Nо при неявном изображении поведения РВ. Кроме того, описаны типичные шаги, которые предпринимаются при удовлетворении требований к полосе пропускания, мощности и вероятности появления ошибок в системе цифровой связи. Также рассмотрены некоторые ограничения, которые делают невозможным неограниченное повышение производительности. Согласно критерию Найквиста, полосу пропускания нельзя сужать бесконечно. Существует теоретический предел; для передачи RSсимволов/с без межсимвольной интерференции нужно задействовать, как минимум, RS/2 Гц полосы пропускания. Теорема Шеннона-Хартли связана с компромиссом между мощностью и полосой пропускания, а также определяет другое важное ограничение ‑ предел Шеннона. Предел Шеннона, равный -1,6 дБ, ‑это минимальное теоретически возможное значение которое (совместно с канальным кодированием) необходимо для получения сколь угодно низкой вероятности возникновения ошибки в канале c аддитивным гауссовским шумом. Более общим ограничением является значение пропускной способности канала, превышение которой автоматически запрещает безошибочную передачу сигналов. Приведены некоторые схемы модуляции с эффективным использованием полосы пропускания, такие как манипуляция с минимальным сдвигом (MSK) и квадратурная амплитудная модуляция (QAM).

 


Список литературы

1. Цифровая связь. Теоретические основы и практическое применение. Изд. 2, испр.: Пер. с англ. – М.: Издательский дом «Вильямс», 2003г.‑1104с.

2. Учебное пособие: Космические и наземные системы радиосвязи. П.Я. Сивирин.

 



Поделиться:


Последнее изменение этой страницы: 2020-03-02; просмотров: 186; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.144.77.71 (0.005 с.)