Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Портативные цифровые осциллографыСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Раньше квалифицированный настройщик электронного оборудования был вынужден иметь целый арсенал измерительных приборов - тестер или мультиметр, электронный осциллограф, частотомер, измеритель емкости и индуктивности, анализатор спектров и т. д. Новую концепцию инструментальных средств и приборов для отладки электронных устройств предложила фирма Fluke (США). Помимо выпуска стандартных приборов (например, мультиметров разного класса) фирма создала новый тип приборов -.скопметры. Из самого названия этих приборов ясно, что они предназначены для измерения скопом всего, что только можно измерить: напряжения, тока, частоты, длительности импульсов и их времени нарастания, наблюдения и запоминания формы электрических и радиотехнических сигналов и т. д. Для промышленности выпускаются скопметры Fluke 105B/99B/96B/92B. Достаточно широкую номенклатуру портативных осциллографов выпускает объединение АКТАКОМ. Под его маркой выпускаются осциллографы ряда зарубежных фирм, имеющие уровень параметров соответствующий мировому уровню работки и производства осциллографов. АСК-4201 - портативный цифровой осциллограф в виде мультиметра с ручкой (рис. 8.3). Рисунок 8.3 – Мультископ АСК-4201 Основные характеристики: 2 канала с гальванической развязкой, полоса пропускания 20МГц, ЖКИ 58x38 мм с разрешением 128x64 точки, чувствительность 0,1В/дел …5 В/дел, коэффициенты развертки 0,5 мкс/дел...0,2 с/дел, максимальное входное напряжение 40 В, время установления 17,5 нс, входное сопротивление МОм, входная емкость 60 пФ. Режимы разверток: автоколебательный, ждущий, однократный, Х-У, предварительная запись осциллограмм. Прибор позволяет выполнять измерения в полевых и цеховых условиях. Малые габариты и вес позволяют носить его в кейсе или дипломате. Открытая модульная конструкция позволяет наращивать возможности прибора. Прибор можно использовать как цифровой частотомер и мультиметр. Цифровой портативный осциллограф-щуп (минископ) АСК-40П один из самых миниатюрных осциллографов ((рис.8.4). Рисунок 8.4 – Минископ АСК-4011 Он имеет следующие характеристики: 2 канала, лоса пропускания 5 МГц, ЖКИ 35x12 (2м), коэффициенты развертки 0,05 мкс/дел...2 мс/дел, максимальное входное напряжение 80 В. Режимы разверток: автоколебательный, однократный. Источники синхронизации: внутренний, внешний. Дополнительные функции; вольтметр, интерфейс RS-232, программное обеспечение. Питание через сетевой адаптер. Габариты 165x33x20, масса 86 г.
Тема 9. Цифровые приборы измерения частоты Общие сведения
Во многих областях науки и техники измерение частоты электромагнитных колебаний является одним из самых распространенных видов измерений. Частотой колебаний f называют число полных колебаний в единицу времени f = n/t, где t - время существования n колебаний. Для периодических сигналов частота f = 1/Т, где Т - период колебаний, который определяется как наименьший интервал времени, через который повторяются мгновенные значения периодического сигнала. Таким образом, частота - это физическая величина, численно равная числу идентичных событий в единицу времени. Частота электромагнитных колебаний однозначно связана не только с периодом колебания Т, но и с длиной однородной плоской волны в свободном пространстве λ: f = c/ λ, где с ≈ 3 ∙ 108 м/с — скорость света в свободном пространстве; λ - длина волны, м. Теоретически измерения частоты, времени и длины волны равноценны, но практически в большинстве случаев измеряют частоты, реже - интервалы времени. Длина волны при необходимости легко вычисляется, а на сверхвысоких частотах и измеряется. Диапазон частот электрорадиотехнических сигналов простирается от долей герца до тысяч гигагерц. Например, спектр частот, применяемых для радиосвязи, радиовещания и телевидения упорядочен. Этот спектр разбит на девять полос, внутри которых частоты изменяются в 10 раз. В соответствии с ГОСТ 24375-80 такое разделение частот по полосам и их метрические наименования приведены в таблице 9.1. Таблица 9.1 – Стандартные полосы частот
Измерение частоты в основном осуществляется двумя основными методами: - преобразованием частоты в постоянное напряжение, измеряемое стрелочным или цифровым вольтметром; - дискретного счета – подсчетом цифровым счетчиком числа периодов сигнала за эталонный промежуток времени. Первый способ широко применялся в аналоговых приборах. При высоких требованиях к точности всегда используется второй метод. Метод дискретного счета лежит в основе построения электронно-счетных частотомеров (ЭСЧ), используемых для измерения частотно-временных параметров электрических сигналов.
Цифровой частотомер
Упрощенная структурная схема ЭСЧ в режиме измерения частоты представлена на (рис.9.1). Схема содержит следующие элементы: входное устройство (ВУ), формирующее устройство (ФУ), временной селектор (ВС), опорный генератор (ОГ), делитель частоты (ДЧ), устройство формирования и управления (УФУ), электронный счетчик (ЭС), дешифратор (Дш) и цифровой индикатор (ЦИ). Рисунок 9.1 – Структурная схема ЭСЧ в режиме измерения частоты Входное устройство обеспечивает усиление или, наоборот, ослабление входного сигнала и его фильтрацию. Формирующее устройство преобразует исследуемый сигнал в последовательность импульсов, частота следования которых равна частоте исследуемого сигнала. Временной селектор представляет собой логическую схему, которая обеспечивает пропускание на электронный счетчик сформированные импульсы измеряемой частоты только при наличии на управляющем входе стробирующего импульса, длительность которого определяет время измерения. Опорный генератор является источником сигнала калиброванного временного интервала. В этих целях, как правило, используется высокостабильный термостатированный кварцевый генератор частотой 1 или 5 МГц. С помощью формирующего устройства опорного генератора вырабатывается последовательность импульсов, поступающих на делитель частоты. Делитель частоты формирует последовательность импульсов, частота следования которых в 10n (n = 1, 2, 3...) раз ниже частоты сигнала опорного генератора. Устройство формирования и управления на основе сигнала, поступающего с делителя частоты, обеспечивает получение прямоугольного строб-импульса, длительность которого определяет время счета и соответственно время измерения. Электронный счетчик обеспечивает подсчет и запоминание числа импульсов, прошедших через селектор за время строб-импульса. Информация с электронного счетчика через дешифратор поступает на цифровой индикатор, на табло которого появляется информация в единицах частоты. Перед началом нового цикла измерений необходимо подготовить счетчик, сбросив показания прошлого цикла. Это делается через цепь сброса от устройства управления. Таким образом, как следует из описания структурной схемы прибора, при измерении частоты на первый вход ВС поступает последовательность импульсов с периодом Тх, определяемым частотой исследуемого сигнала fх, причем Тх = 1/fx. На второй вход ВС поступает строб-импульс длительностью ∆Т=10nТкв, (9.1) где Ткв — период следования импульсов с опорного кварцевого генератора. На электронный счетчик проходит группа импульсов, число которых (9.2) Если не учитывать погрешность дискретизации и сравнивать значения для ∆Т из равенств (9.1) и (9.2), то имеем откуда (9.3) Таким образом, измеряемая частота равна числу импульсов N, образованных из измеряемого сигнала, а fкв ∙ 10-n — коэффициент, определяющий единицу измерения частоты и число значащих цифр при отсчете (рис.9.2). Рисунок 9.2 – Временная диаграмма работы ЭСЧ в режиме измерения частоты Принято выделять две основные составляющие погрешности измерения частоты δf. Первая составляющая - это погрешность формирования образцового интервала времени ∆Т, в течение которого временной селектор пропускает импульсы, т.е. проводится измерение. Эта погрешность определяется погрешностью меры, т.е. нестабильностью частоты кварцевого генератора δкв. Вторая составляющая – погрешность дискретизации δД, возникает за счет потери части периода измеряемых импульсов ∆t1, ∆t2 и приблизительно составляет ∆N = ±1 импульс. Относительная погрешность дискретизации (9.4)
Тогда, относительная погрешность измерения будет равна (9.5)
|
||||||||||
Последнее изменение этой страницы: 2016-04-07; просмотров: 904; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.147.46.174 (0.009 с.) |