Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Тема 2. Физические величины, средства и методы их измеренияСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Физические величины. Единицы величин
Физическая величина - это свойство, общее в качественном отношении для многих физических объектов, но в количественном отношении индивидуальное для каждого из них. Значение физической величины - это количественная оценка размера физической величины, представленная в виде некоторого числа принятых для нее единиц (например, значение сопротивления проводника 5 Ом). Различают истинное значение физической величины, идеально отражающее свойство объекта, и действительное, найденное экспериментально, достаточно близкое к истинному значению, которое можно использовать вместо него, и измеренное значение, отсчитанное по отсчетному устройству средства измерения. Совокупность величин, связанных между собой зависимостями, образуют систему физических величин, в которой имеются основные и производные величины. Основная физическая величина - это величина, входящая в систему и условно принятая в качестве независимой от других величин этой системы. Производная физическая величина - это величина, входящая в систему и определяемая через основные величины этой системы. Важной характеристикой физической величины является ее размерность (dim). Размерность - это выражение в форме степенного одночлена, составленного из произведений символов основных физических величин и отражающее связь данной физической величины с физическими величинами, принятыми в данной системе величин за основные с коэффициентом пропорциональности, равным единице. Единица физической величины - это конкретная физическая величина, определенная и принятая по соглашению, с которой сравниваются другие величины того же рода. В установленном порядке допускаются к применению единицы величин Международной системы единиц (СИ), принятой Генеральной конференцией по мерам и весам, рекомендованные Международной организацией законодательной метрологии. Различают основные, производные, кратные, дольные, когерентные, системные и внесистемные единицы. Основная единица системы единиц - единица основной физической величины, выбранная при построении системы единиц. Метр - длина пути, проходимая светом в вакууме за интервал времени 1/299792458 доли секунды. Килограмм - единица массы, равная массе международного прототипа килограмма. Секунда - время, равное 9192631770 периодам излучения, соответствующим переходу между двумя сверхтонкими уровнями основного состояния атома Цезия-133. Ампер - сила неизменяющегося тока, который при прохождении по двум параллельным прямолинейным проводникам бесконечной длины и ничтожно малой площади кругового поперечного сечения, расположенным в вакууме на расстоянии 1 м один от другого, вызывал бы на каждом участке проводника длиной 1 м силу взаимодействия, равную 2 ∙ 10-7 Н. Кельвин - единица термодинамической температуры, равная 1/273,16 части термодинамической температуры тройной точки воды. Моль - количество вещества системы, содержащей столько же структурных элементов, сколько содержится атомов в углероде-12 массой 0,012 кг. Кандела - сила света в заданном направлении источника, испускающего монохроматическое излучение частотой 540 ∙ 1012 Гц, энергетическая сила света которого в этом направлении составляет 1/683 Вт/ср. Предусмотрены также две дополнительные единицы. Радиан - угол между двумя радиусами окружности, длина дуги между которыми равна радиусу. Стерадиан - телесный угол с вершиной в центре сферы, вырезающий на поверхности сферы площадь, равную площади квадрата со стороной, равной радиусу сферы. Производная единица системы единиц - единица производной физической величины системы единиц, образованная в соответствии с уравнением, связывающим ее с основными единицами или же с основными и уже определенными производными. Например, единица мощности, выраженная через единицы СИ, 1Вт = м2 ∙ кг ∙ с-3. Наряду с единицами СИ Закон «Об обеспечении единства измерений» допускает применение внесистемных единиц, т.е. единиц, не входящих ни в одну из существующих систем. Принято выделять несколько видов внесистемных единиц: - единицы, допускаемые наравне с единицами СИ (минута, час, сутки, литр и др.); - единицы, применяемые в специальных областях науки и техники - единицы, изъятые из употребления (миллиметр ртутного столба, К числу внесистемных относят также кратные и дольные единицы измерения, имеющие иногда собственные наименования, например единица массы - тонна (т). В общем случае десятичные, кратные и дольные единицы образуются с помощью множителей и приставок. Средства измерений
Под средством измерений (СИ) понимается устройство, предназначенное для измерений и имеющее нормированные метрологические характеристики. По функциональному назначению СИ подразделяются на: меры, измерительные приборы, измерительные преобразователи, измерительные установки, измерительные системы. Мера - средство измерений, предназначенное для воспроизведения и хранения физической величины одного или нескольких размеров с необходимой точностью. Мера может быть представлена в виде тела или устройства. Измерительный прибор (ИП) - средство измерения, предназначенное для извлечения измерительной информации и преобразования В зависимости от способа преобразования сигнала измерительной информации различают приборы прямого преобразования (прямого действия) и приборы уравновешивающего преобразования (сравнения). В приборах прямого преобразования сигнал измерительной информации преобразуется необходимое количество раз в одном направлении без применения обратной связи. В приборах уравновешивающего преобразования, наряду с цепью прямого преобразования, имеется цепь обратного преобразования и измеряемая величина сравнивается с известной величиной, однородной с измеряемой. В зависимости от степени усреднения измеряемой величины выделяют приборы, дающие показания мгновенных значений измеряемой величины, и приборы интегрирующие, показания которых определяются интегралом по времени от измеряемой величины. Измерительный преобразователь - средство измерений, предназначенное для преобразования измеряемой величины в другую величину или измерительный сигнал, удобный для обработки, хранения, дальнейших преобразований, индикации или передачи. В зависимости от места в измерительной цепи различают преобразователи первичные и промежуточные. Первичные преобразователи - это те, к которым подводится измеряемая величина. Если первичные преобразователи размещаются непосредственно на объекте исследования, удаленном от места обработки, то они называются иногда датчиками. В зависимости от вида входного сигнала преобразователи подразделяют на аналоговые, аналого-цифровые и цифроаналоговые. Широко распространены масштабные измерительные преобразователи, предназначенные для изменения размера величины в заданное число раз. Измерительная установка - это совокупность функционально объединенных средств измерений (мер, измерительных приборов, измерительных преобразователей) и вспомогательных устройств (сопряжения, питания и др.), предназначенных для одной или нескольких физических величин и расположенных в одном месте. Измерительная система - совокупность функционально объединенных мер, измерительных преобразователей, ЭВМ и других технических средств, размещенных в разных точках контролируемого объекта, с целью измерения одной или нескольких физических величин. Виды и методы измерений
В метрологии измерение определяется как совокупность операций, выполняемых с помощью технического+- средства, хранящего единицу физической величины, позволяющего сопоставить измеряемую величину с ее единицей и получить значение этой величины. Классификация видов измерений по основным классификационным признакам представлена в таблице 2.1. Таблица 2.1 – Виды измерений
Прямое измерение - измерение, при котором исходное значение величины находят непосредственно из опытных данных в результате выполнения измерения. Например, измерение амперметром силы тока. Косвенное измерение - измерение, при котором искомое значение величины находят на основании известной зависимости между этой величиной и величинами, которые подвергаются прямым измерениям. Например, измерение сопротивления резистора с помощью амперметра и вольтметра с использованием зависимости, связывающей сопротивление с напряжением и током. Совместные измерения - это измерения двух или более неодноименных величин для нахождения зависимости между ними. Классическим примером совместных измерений является нахождение зависимости сопротивления резистора от температуры; Совокупные измерения - это измерения нескольких одноименных величин, при которых искомые значения величин находят решением системы уравнений, получаемых при прямых измерениях и различных сочетаниях этих величин. Например, нахождение сопротивлений двух резисторов по результатам измерений сопротивлений последовательного и параллельного соединений этих резисторов. Абсолютные измерения - измерения, основанные на прямых измерениях одной или нескольких величин и использовании значений физических констант, например, измерения силы тока в амперах. Относительные измерения — измерения отношения значения физической величины к одноименной величине или изменения значения величины по отношению к одноименной величине, принятой за исходную. К статическим измерениям относят измерение, при котором СИ работает в статическом режиме, т.е. когда его выходной сигнал (например, отклонение указателя) остается неизменным в течение времени измерения. К динамическим измерениям относят измерения, выполненные СИ в динамическом режиме, т.е. когда его показания зависят от динамических свойств. Динамические свойства СИ проявляются в том, что уровень переменного воздействия на него в какой-либо момент времени обуславливает выходной сигнал СИ в последующий момент времени. Измерения максимально возможной точности, достигаемой при существующем уровне развития науки и техники. Такие измерения проводят при создании эталонов и измерениях физических констант. Характерными для таких измерений являются оценка погрешностей и анализ источников их возникновения. Технические измерения - это измерения, проводимые в заданных условиях по определенной методике и проводимые во всех отраслях народного хозяйства, за исключением научных исследований. Совокупность приемов использования принципа и средств измерений называется методом измерения (рис.2.1). Все без исключения методы измерений основаны на сравнении измеряемой величины с величиной, воспроизводимой мерой (однозначной или многозначной). Метод непосредственной оценки характеризуется тем, что значения измеряемой величины отсчитывают непосредственно по отсчетному устройству измерительного прибора прямого действия. Шкала прибора заранее градуируется с помощью многозначной меры в единицах измеряемой величины. Методы сравнения с мерой предполагают сравнение измеряемой величины и величины, воспроизводимой мерой. Наиболее распространены следующие методы сравнения: дифференциальный, нулевой, замещения, совпадения.
Рисунок 2.1 – Классификация методов измерений При нулевом методе измерения разность измеряемой величины и известной величины сводится в процессе измерения к нулю, что фиксируется высокочувствительным нуль-индикатором. При дифференциальном методе по шкале измерительного прибора отсчитывают разность измеряемой величины и величины, воспроизводимой мерой. Неизвестную величину определяют по известной величине и измеренной разности. Метод замещения предусматривает поочередное подключение на вход индикатора измеряемой и известной величин, т.е. измерения проводят в два приема. Наименьшая погрешность измерения получается в том случае, когда в результате подбора известной величины индикатор дает такой же отсчет, что и при неизвестной величине. Метод совпадения основан на измерении разности между измеряемой величиной и величиной, воспроизводимой мерой. При измерении используют совпадения отметок шкал или периодических сигналов. Метод применяется, например, при измерении частоты и времени по эталонным сигналам. Измерения выполняют с однократным либо с многократными наблюдениями. Под наблюдением здесь понимается экспериментальная операция, выполняемая в процессе измерения, в результате которой получают одно значение величины, имеющее всегда случайный характер. При измерениях с многократными наблюдениями для получения результата измерения требуется статистическая обработка результатов наблюдений.
|
||||||||
Последнее изменение этой страницы: 2016-04-07; просмотров: 4878; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 13.58.40.171 (0.008 с.) |