Основы взаимодействия электромагнитныхизлучений с биологическими объектами 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Основы взаимодействия электромагнитныхизлучений с биологическими объектами



О.Л. Власова, Н.С. Линькова

Медицинская биофизика: основы лазерных медицинских технологий, примеры применения КВЧ-излучений в практической медицине

Учебное пособие

Санкт-Петербург

Издательство Политехнического университета

 


 

Министерство образования и науки Российской Федерации

__________

 

САНКТ-ПЕТЕРБУРГСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ
ПЕТРА ВЕЛИКОГО

_____________________________________________________________

О.Л. Власова, Н.С. Линькова

Медицинская биофизика: основы лазерных медицинских технологий, примеры применения КВЧ-излучений в практической медицине

Учебное пособие

Санкт-Петербург

Издательство Политехнического университета

 

УДК 577.343

Власова О.Л., Линькова Н.С. Медицинская биофизика: основы лазерных медицинских технологий, примеры применения КВЧ-излучений в практической медицине: Учеб.пособие. СПб.: Изд-во СПбПУ, 2016. 100 с.

Пособие соответствует государственному образовательному стандарту дисциплин «Медицинская биофизика», раздел «Взаимодействие электромагнитных полей и излучений с биообъектами» и «Лазерные технологии в медицине»,разделы «Физические основы применения лазеров в биологии и медицине», «Применение технологий НИЛИ в медицине» направления подготовки бакалавров 16.03.01 «Техническая физика».

В пособии рассмотрены основы взаимодействия электромагнитного излучения (ЭМИ) различных диапазонов с биологическими объектами, перспективы применения лазеров в медицине и биологии, а также, приведены примеры применения различных видов излучений для моделирования ускоренного старения органов и тканей, оценки влияния низкоинтенсивного излучения на систему кровообращения, обсуждены вопросы молекулярных механизмов взаимодействия КВЧ-излучения с биологическими объектами и границы его применимости в терапевтических целях.

Предназначено для студентов высших учебных заведений, обучающихся по направлению подготовки бакалавров 16.03.01 «Техническая физика» по дисциплинам «Медицинская биофизика» и «Лазерные технологии в медицине». Оно может быть использовано для обучения студентов бакалавриата и магистратуры кафедры «Медицинская физика»Института физики, нанотехнологий и телекоммуникаций ФГБОУ ВПО «СПбПУ» и студентов медицинских ВУЗов.

Табл. 6, Ил. 47, Библиогр.: назв. 7

 

Печатается по решению редакционно-издательского совета Санкт-Петербургского политехнического университета Петра Великого.


Оглавление

Введение ………………………………………………………………………. 5

Глава 1. Биофизические аспекты взаимодействия ЭМИ с
биообъектами. Основные понятия
………………………………………..5

1.1. Основные понятия об ЭМИ…………………………………………… 5

1.2. Основы взаимодействия электромагнитных излучений с биологическими объектами ……………………………………………..10

1.2.1. Взаимодействие КВЧ-излучения с биообъектами……………………11

1.2.2.Взаимодейсвтие лазерного излучения с биообъектами………………..17

Глава 2. Физические основы работы лазера ……………………………….22

2.1. Конструкция лазера………………………………………………………..22

2.2. Лазерное излучение………………………………………………………..29

2.3. Механизмы воздействия лазерного излучения на биоткань…...………...34

2.4. Биостимуляция……………………………………………………………..42

2.5. Фотодинамическая терапия……………………………………..…………44

2.6. «Тепловые» и «нетепловые» воздействия на ткань…………………..…..45

2.7. Нелинейные процессы………………………………………….………….50

2.8. Лазерная система на основе Nd:YAG с регулировкой дозы
воздействия для рассечения ткани…………………………………………….52

 

Глава 3. Биофизические аспекты взаимодействия ЭМИ
с биообъектами: примеры применения в практической медицине
……55

3.1. Перспективы применения низкоинтенсивного лазерного
излучения и гамма-излучения для моделирования ускоренного

старения органов и тканей…………………………………………………….55

3.2. Влияние низкоинтенсивного лазерного излучения
на сердечно-сосудистую систему……………………………………………….64

3.2.1. Влияние He-Ne-лазерного излучения низкой мощности на адренореактивностьпиальных артериальных сосудов и
деформируемость эритроцитов у мышей………………………………………..64

3.2.2. Влияние низкоинтенсивного лазерного излучения красного
спектра на некоторые свойства эритроцитов крыс Вистар………………..…73

3.3. КВЧ-излучение: от молекулярно-клеточных механизмов
воздействия к применению в клинической практике…………………………..76

3.3.1. Применение электромагнитного излучения миллиметрового
диапазона для лечения сердечно-сосудистой патологии……………………76

3.3.2. Биологические эффекты электромагнитного излучения
миллиметрового диапазона……………………………………………………..78


 

Введение

Электромагнитные излучения (ЭМИ) представлены спектром частот, который охватывает очень широкий диапазон. В биологии и медицине для фундаментальных научных исследований, при разработке новых физических методов изучения биообъектов, диагностики различных заболеваний и их лечения используется практически весь диапазон ЭМИ. С точки зрения взаимодействия с биологическими объектами очень важно учитывать, как особенности излучения данного диапазона ЭМИ, так и соответствующие характеристики биообъектов. В данном учебном пособии авторы сконцентрировали внимание на двух диапазонах — оптическом и КВЧ, подкрепив фундаментальные аспекты примерами из практической медицины. Такое построение материала связано с желанием авторов помочь студентам в понимании теоретического материала на конкретных примерах научных и практических работ.

 

Глава 1. БИОФИЗИЧЕСКИЕ АСПЕКТЫ ВЗАИМОДЕЙСТВИЯ ЭМИ С БИОБЪЕКТАМИ. ОСНОВНЫЕ ПОНЯТИЯ

Основные понятия об ЭМИ

Общей чертой для всех ЭМИ является их квантовая природа, определяющая характер их распространения и взаимодействия с веществом. Энергия кванта прямо пропорциональна частоте и обратно пропорциональна длине волны. При высоких частотах энергия достаточна для ионизации молекул или атомов вещества, а при более низких значительно снижается. В соответствии с этим, в зависимости от энергии кванта, ЭМИ подразделяются на два типа — ионизирующих и неионизирующих излучений, а условной границей между ними принята энергия кванта в 12 эВ, соответствующая длине волны 100 нм. Эта граница находится в ультрафиолетовой области электромагнитного спектра. К ионизирующим ЭМИ относят гамма- и рентгеновское излучения, а к неионизирующим ЭМИ — более низкочастотные (и, соответственно, более длинноволновые): ультрафиолетовое (УФ); оптическое (видимый свет); инфракрасное (ИК); гипервысокочастотное (ГВЧ); сверхвысокочастотное (СВЧ) или микро- волновое (МКВ) и радиочастотное (РЧ) излучения (табл. 1).

Границы диапазонов по частотам (длинам волн) и энергиям квантов приняты условно, так как упомянутые диапазоны перекрываются друг с другом и фактически не имеют четких границ. В зависимости от длины волны (частоты) излучения, а следовательно, и энергии кванта, существенно меняется проникающая способность и характер взаимодействия ЭМИ с биологическими объектами. Интерес специалистов физических, биологических и медицинских специальностей к ЭМИ оформился в виде таких научных разделов как радиационная биология ионизирующих излучений, фотобиология, которая изучает воздействие излучений УФ-, оптического и ИК-диапазонов, и радиационная биология и биофизика неионизирующих ЭМИ. Радиочастотные (РЧ) (в диапазоне 300 кГц–300МГц) и сверхвысокочастотные или микроволновые (МКВ) (в диапазоне 300МГц–30 ГГц) неионизирующие ЭМИ наиболее широко используются в различных областях деятельности человека и их биологические эффекты изучены в большей степени.

 

Таблица 1.

Общая классификация неионизирующих электромагнитных излучений

Распространение ЭМИ осуществляется в виде электромагнитных волн, основными параметрами которых являются частота f, длина волны λ и скорость распространения с, связанные соотношением:

f=c/ λ,

которое справедливо для свободного, не заполненного веществомпространства, где распространение волны происходит со скоростью света с =3*108 м/с. Если скорость света выражена в м/с, частотав МГц, то длина волны в метрах будет равна

λ=300/f.

В заполненном веществом пространстве скорость распространения определяется относительными диэлектрической ε и магнитнойμ проницаемостями вещества

.

Электромагнитная волна может быть представлена в видевекторов, характеризующих напряженность электрической Е имагнитной Н -составляющих и вектора Умова–Пойнтинга К, в направлении которого происходит распространение волны.Вместо термина напряженность электрической E- и магнитной H-составляющих электромагнитной волны также используются понятия напряженностей электрического (вектор Е) и магнитного (вектор Н) поля (рис. 1).

Рис. 1. Расположение векторов Е, Н и К электромагнитной волны при ее распространении в свободном пространстве.

Электрическая E - и магнитная H -составляющие в распространяющейся электромагнитной волне перпендикулярны друг другу и направлению распространения (рис. 2).

Рис. 2. Электромагнитная волна, распространяющаяся в свободном пространстве.

Ориентация вектора электромагнитной волны Е в пространстве определяет вид поляризации электромагитной волны. Плоскость, проходящая через направления поляризации и распространения электромагнитнойволны, носит название плоскости поляризации. Поляризация электромагнитной волны может быть линейной (плоской), круговой и эллиптической.В случае линейной поляризации вектор Е, периодически изменяясь повеличине в процессе распространения, остается параллельным самомусебе, перпендикулярным вектору Н и направлению распространения волны (рис. 2). При круговой поляризации вектор Е вращается с частотой волны, оставаясь при этом неизменным по абсолютной величине, описывая в пространстве круг,причем в зависимости от направления вращения, поляризация электромагнитной волны будет левая (рис. 3а) или правая (рис. 3б). Направление поляризации удобнее всего определятьпо направлению вращения винта: левое - для совпадающего слевосторонним винтом и правое - для совпадающего с правосторонним.

Рис. 3. Электромагнитная волна с круговой поляризацией (показана для вектора Е): а - левая поляризация, б - правая поляризация.

В случае эллиптической поляризации амплитуда вектора Е при его вращении не остается постоянной, а сам вектор впространстве описывает эллипс. Помимо этого, горизонтальное или вертикальное расположение вектора Е определяет электромагнитную волну, котораясоответственно при этом будет вертикально (рис. 4) или горизонтально (рис. 5) поляризованной.

Рис. 4. Электромагнитная волна с вертикальной поляризацией.

Рис. 5. Электромагнитная волна с горизонтальной поляризацией.

Векторы Н и Е электромагнитной волны в свободномпространстве лежат в плоскости, перпендикулярной направлениюраспространения волны. Такая волна получила названиепоперечно-поляризованной (или плоской поперечной или простоплоской волны) и обозначается как ТЕМ-волна (по первымбуквам английских слов тransverse, еlectric, magnetic). Фронтом электромагнитной волны является поверхность, всеточки которой имеют одинаковую фазу, т. е. поверхность, в каждую точку которой волны от источника излучения (антенны)приходят в одно и тоже время. Фронт электромагнитной волныбудет сферическим, если часть пространства, которую достигаетволна при распространении за определенный промежуток времени, может быть ограничена сферической поверхностью, в любойточке которой фаза волны одинакова. На очень большом расстоянии от источника излучения фронт волны теряет сферичность исчитается плоским.


 

Конструкция лазера

Процесс лазерного излучения

Процесс вынужденного испускания является основой лазерного усиления. Чтобы использовать этот процесс, необходимо электрон, например, в атоме (ионе, молекуле, твердом теле) перевести с более низкого на более высокий энергетический уровень. Чтобы практически реализовать процесс лазерного усиления, указанное состояние необходимо обеспечить не только у отдельного атома. Но и у целого ансамбля атомов. Число атомов, занимающих более высокий верхний лазерный уровень должно быть всегда больше заселенности низкого лазерного уровня. Это явление называют инверсией населенности. Какие существуют возможности получения такой инверсии населенности? Нагревание не подходит, так как по закону излучения Планка (рис. 12) высокие уровни всегда заселены меньше, чем низкие. Облучение светом (оптическая накачка) системы только с двумя энергетическими уровнями даже при значительной интенсивности накачки дает одинаковую населенность обоих уровней. Причина заключается в том, что большая интенсивность облучения кроме поглощения, т.е. заселение верхнего энергетического уровня, приводит также ко многим эмиссиям, т.е. к снижению населенности верхнего уровня. Таким образом, с помощью оптической накачки в двухуровневой системе нельзя произвести инверсию населенности. По-другому дело обстоит в системах с тремя и большим числом уровней.

 

Рис. 12. По закону излучения Планка при нагревании отношение n2/n1 чисел населенности стремится только к 1. Инверсии населенности достичь нельзя.

Облучение светом (оптическая накачка) системы только с двумя энергетическими уровнями даже при значительной интенсивности накачки дает одинаковую населенность обоих уровней. Причина заключается в том, что большая интенсивность облучения кроме поглощения, т.е. заселение верхнего энергетического уровня, приводит также ко многим эмиссиям, т.е. к снижению населенности верхнего уровня. Таким образом, с помощью оптической накачки в двухуровневой системе нельзя произвести инверсию населенности.

Лазер с тремя уровнями. Если в системе с тремя энергетическими уровнями (рис. 13) производится накачка с уровня 1 на уровень 3, то при спонтанной эмиссии, т.е. распаде верхнего уровня, может быть населен уровень 2. Если это долгоживущий уровень, то со временем величина его населенности увеличивается. При очень большой накачке населенность этого второго уровня может быть, по крайней мере на короткое время, выше, чем населенность нижнего лазерного уровня (основное состояние).

 

Рис. 13. В трехуровневой лазерной системе при очень интенсивной накачке с уровня 1 на уровень 3 можно получить на уровне 2 более высокую населенность, чем на уровне 1.

Однако, когда лазер начнет работать, инверсия населенности быстро уменьшится. Мощность накачки тогда оказывается недостаточной, чтобы постоянно поддерживать инверсию населенности, так что лазеры с тремя уровнями практически всегда являются импульсными лазерами.

Лазер с четырьмя уровнями. Если систему с тремя уровнями расширить на еще один уровень 2’ между уровнем 1 и уровнем 2 (рис. 14), то можно избежать проблем трехуровнего лазера в отношении короткой по времени инверсии населенности, при условии, что уровень 2’ является очень короткоживущим. Если лазерный переход осуществляется с уровня 2 на уровень 2’, то уровень 2’ при работе лазера ввидуего короткого существванияпостянноопустшается на основной уровень. В этой конфигурации даже при незначительной мощности накачки можно пстянносхранять инверсию населенности между уровнями 2 и 2’. Лазеры с 4-мя уровнями могут поэтомуработать в непрерывном режиме (cw – continuouswave).

 

Рис. 14. В лазерной системе с 4-мя уровнями можно обеспечить даже при слабой накачке инверсию населенности на долгоживущем уровне 2 п отношению к короткоживущему уровню 2’.

Следует обратить внимание на то, чтобы при всех механизмах возбуждения изменения заселенности отдельных уровней происходили по кругу, т.е. заканчивались на основном уровне, что позволяет вступить в новый цикл накачки. Во многих случаях этот цикл накачки заканчивается, по крайней мере, частично, на так называемых «метастабильных триплетных уровнях» (рис. 15). Они практические не распадаются на основное состояние, так что атомы со временем полностью накачиваются в эти метастабильные состояния и впоследствии не могут использоваться в цикле лазерной накачки, таким образом, лазерная генерация прекращается. Эту проблему можно частично обойти, если лазерную среду постоянно менять, например, посредством прокачки. Другая возможность – это добавление так называемого буферного газа. Продолжительность существования метастабильного уровня в этом случае сокращается из-за столкновений атомов или молекул, участвующих в лазерной генерации, с атомами или молекулами буферного газа.

 

Рис. 15. Если нижний лазерный уровень частично опустошается на метастабильный триплетный уровень, то через некоторое время генерация лазерного излучения прекращается.

Лазерные активные среды

В качестве лазерной среды могут применяться все материалы, у которых можно обеспечить инверсию населенности. Это возможно у следующих материалов:

а) свободные атомы, ионы, молекулы, ионы молекул в газах или парах;

б) молекулы красителей, растворенные в жидкостях;

в) атомы, ионы, встроенные в твердое тело;

г) легированные полупроводники;

д) свободные электроны.

Количество сред, которые способны к генерации лазерного излучения, и количество лазерных переходов очень велико. В одном только элементе неоне наблюдается около 200 различных лазерных переходов. По виду лазерной активной среды различают газовые, жидкостные, полупроводниковые и твердотельные лазеры. В качестве курьеза следует отметить, что человеческое дыхание, состоящее из двуокиси углерода, азота и водяных паров, является подходящей активной средой для слабого СО2-лазера, а некоторые сорта джина генерировали уже лазерное излучение, поскольку они содержат достаточное количество хинина с голубой флуоресценцией.

Известны линии лазерной генерации от ультрафиолетовой области спектра (100 нм) до миллиметровых длин волн в дальнем ИК-диапазоне. Лазеры плавно переходят в мазеры. Интенсивно ведутся исследования в области лазеров в диапазоне рентгеновских волн (рис. 16).. Но практическое значение приобрели только два-три десятка типов лазера. Наиболее широкое медицинское применение сейчас нашли СО2-лазеры, лазеры на ионах аргона и криптона, Nd:YAG-лазеры непрерывного и импульсного режима, лазеры на красителях непрерывного и импульсного режима, He-Ne-лазеры и GaAs-лазеры. Эксимерные лазеры, Nd:YAG-лазеры с удвоение частоты, Er:YAG-лазеры и лазеры на парах металлов также все шире применяются в медицине.

Рис. 16. Типы лазеров, наиболее часто применяемые в медицине.

Кроме того, лазерные активные среды можно различать по тому, формируют ли они дискретные лазерные лини, т.е. только в очень узком определенном интервале длин волн, или излучают непрерывно в широкой области длин волн. Свободные атомы и ионы имеют из-за их четко определенных энергетических уровней дискретные лазерные линии. Многие твердотельные лазеры излучают также на дискретных линиях (рубиновые лазеры, Nd:YAG-лазеры). Были разработаны, однако, также твердотельные лазеры (лазеры на центрах окраски, лазеры на александрите, на алмазе), длины волн излучения у которых непрерывно могут изменяться в большой спектральной области. Это касается в особенности лазеров на красителях, в которых эта техника прогрессировала в наибольшей степени. Лазеры на полупроводниках ввиду зонной структуры энергетических уровней полупроводников также не имеют дискретных четких лазерных линий генерации.

Механизм возбуждения

Как уже было упомянуто, генерация лазерного излучения может быть достигнута, если имеется инверсия населенности двух энергетических уровней. Чтобы получить эту инверсию населенности, в лазерную среду должна быть введена энергия в соответствующей форме. Этого можно добиться различным образом, независимо от специфического лазерного процесса. Тем не менее, тот или иной метод возбуждения следует выбирать и оптимизировать специально для соответствующего типа лазера. Основные методы возбуждения – это возбуждение очень интенсивным светом, так называемая «оптическая накачка», и возбуждение электрическим газовым разрядом. В полупроводниковых лазерах возбуждение осуществляется непосредственно электрическим током. Для возбуждения могут быть использованы также химические реакции.

Оптическая накачка

Если лазерную среду облучают интенсивным светом, то благодаря поглощению могут быть населены более высокие энергетические уровни. Этот процесс называют «оптической накачкой». В качестве источников света в большинстве случаев применяются очень интенсивные лампы-вспышки, непрерывно излучающие лампы высокого давления, а также другие лазеры. Так как лампы-вспышки излучают в широком спектральном диапазоне, то лазерные среды со многими уровнями возбуждения или даже полосами возбуждения особенно подходят для оптической накачки, ибо накачка выполняется только длинами волн, которые точно соответствуют разнице энергии между двумя уровнями. Так как для стимуляции лазерного перехода используется только часть энергии возбуждения, то длина генерируемой лазерной волны всегда больше, чем длина волны возбуждения.

Рис. 16. Пример коллинеарной накачки лазера другим лазером (лазером накачки). Длина волны генерации всегда больше, чем длина волны накачки, благодаря чему луч накачки и лазерный луч могут быть разделены дисперсионной призмой.

 

Лазерное излучение

Лазерное излучение характеризуется тремя важными признаками (рис. 18).

1. Излучение является когерентным, т.е. все цуги волн являются синфазными, как во времени, так и в пространстве.

2. Излучение является сильно коллимированным, т.е. все лучи в пучке почти параллельны друг другу. На большом расстоянии лазерный пучок лишь незначительно увеличивается в диаметре.

3. Лазерное излучение является монохроматическим, т.е. все цуги волн имеют одинаковую длину волны, частоту и энергию.

а. когерентность

 

б. коллимированность

в. монохроматичность

Рис. 18. Графическое представление когерентности, коллимированности и монохроматичности.

Кроме того, с помощью лазера можно обеспечить очень высокую мощность излучения. Все эти признаки по отдельности можно обеспечить также и другими источниками света, но лазер является единственным источником света, которому присущи все три упомянутых признака одновременно. При описании лазерного пучка наряду с особенностями когерентности,коллимированности и монохроматичности важно отметить распределение интенсивности в пучке. Далее важно знать влияния оптических элементов, например, линз или зеркал на форму пучка. Так как лазерный пучок является отображением лазерного излучения в лазерном резонаторе, то распределение интенсивности поперечных электромагнитных мод (ТЕМ) резонатора обнаруживается вновь в лазерном пучке. Резонатор, работающий в основной моде (ТЕМ00), излучает также лазерный пучок с основной модой ТЕМ00 и т.д. Лазерный пучок имеет в этом случае в каждом месте профиль интенсивности по типу гауссовой колоколообразной кривой. Чтобы при таком распределении интенсивности можно было говорить о диаметре пучка, в качестве диаметра определяют значение, при котором интенсивность лазерного излучения снизилась в е2≈7,39 раз (рис. 19).

Рис. 19. В качестве диаметра (d) лазерного луча в основной моде принимается удвоенное расстояние от оси луча, на котором интенсивность падает в е2≈7,39 раз.

При высоких модах – ТЕМln сформулировать четко определение диаметра уже нельзя, но можно исходить из того, что более высокая мода ТЕМlnимеет размеры больше приблизительно в или раз, если она генерирована таким же резонатором (рис. 20).

Рис. 20. Схематическое изображение распределения интенсивности поперечных мод, если не задано определенное преимущественное направление в резонаторе.

Если в лазерный пучок поместить линзу, то законы геометрической оптики дают только приблизительно правильные, а, зачастую, ложные результаты при описании хода пучка за линзой. И здесь нужно вернуться к теории изображения гауссовых пучков или к более сложным теориям многомодовых лазерных пучков. Важнейшее отличие при формировании изображений гауссовых пучков от геометрической оптики состоит в том, что перетяжка пучка на расстоянии d0перед линзой отображается в виде новой перетяжки пучка на расстоянии fза линзой с диаметром d=4λf/pd0. В противоположность этому при использовании геометрической оптики получается симметричное изображение 2fна 2f, и размер изображения не меняется (рис. 21).

Рис. 21. Формирование изображений в приближении геометрической оптики и в случае гауссова пучка.

Диаметр перетяжки пучка d за линзой проще определить через угол расходимости луча q (рис. 22). В этом случае выполняется соотношение: d=2qf. Для гауссова пучка значение q может быть рассчитано следующим образом:

q=2λ/pd0.

Мощность излучения непрерывных медицинских лазеров составляет от 0,01 до 100 Вт. Если мощность лазера сконцентрировать в фокусе линзы, то в этом месте можно получить значительную плотность мощности.

 

Рис. 22.Упрощенно диаметр перетяжки пучка при фокусировке через линзу с фокусным расстоянии f может быть определен на основе фокусного расстояния и угла расходимости 2q перед линзой.

Плотность мощности и время воздействия являются основными параметрами лазерного пучка, определяющими его влияние на биоткань. Плотность мощности определяется как отношение мощности лазерного излучения к поперечному сечению пучка. Соотношение между такими понятиями как мощность лазера, плотность мощности, плоскость фокусировки, диаметр фокуса и фокусное расстояниелинзы должны быть обязательно понятны для каждого, кто пользуется лазером, чтобы избежать его неправильного применения. На рис. 23 еще раз графически показано соотношение между плотностью мощности лазерного луча и фокусным расстоянием линзы.

Рис. 23. Соотношение между плотностью мощности и величиной фокуса.

 

Оптические свойства ткани

При попадании лазерного луча на ткань могут наблюдаться три процесса: отражение, поглощение и/или пропускание – тольконезначительный процент излучения отражается непосредственно от поверхности (рис. 24). Проникающие в ткань лучи частично поглощаются, частично рассеиваются и частично пропускаются (рис. 25).

 

 

 

Рис. 24. Оптические свойства слоя материи. Падающий лучевой поток φ0 разделяется на три части: отраженная часть Rφ, поглощенная частьAφ и пропущенная частьТφ: Rφ+Aφ+ Тφ=1.

 

 

Рис. 25. Оптические свойства лазерного луча на коже.

 

В зависимости от длины волны падающего излучения отражается до 60% излучения. Рассеяние зависит от негомогенных структур ткани и определяется разными показателями преломления у разных ячеек и разницей между ячейками и окружающей их средой. Волны с длиной намного большей, чем диаметр ячейки (≥10 мкм), рассеиваются ячеистыми структурами лишь в незначительной степени. Но так как электромагнитныый спектр широко используемых лазеров простирается отИК (1мм - 0,78 мкм) до УФ (0,38 – 0,10 мкм) диапазона длин волн, мы практически всегда имеем дело с рассеянием. Для длин волн более 1,0 мкм можно рассчитать на основе закона Ламберта-Бэра в первом приближении глубину проникновения излучения. Наилучшим образом соотношение поглощения и рассеяния описано в теории Кубелки-Мунка. Уравнение, описывающее распространение излучения в средах с учетом поглощения и рассеяния имеет вид:

 

dLC(r,z)/dz = -γLC(r,z),

где LC(r,z) – плотность мощности излучения [Вт/м2]коллимированного луча в месте r (вектор места) в направлении z, коэффициент ослабления (сумма коэффициентов рассеяния [м-1] и поглощения [м-1]). Рассеяние в биологической ткани зависит от длины волны лазерного луча. Излучение эксимерного лазера УФ диапазона (193, 248, 308 и 351 мкм), а также ИК-излучение 2,9 мкм Er:YAG-лазера и 10,6 мкм CO2-лазера имеют глубину проникновения от 1 до 20 мкм. Здесь рассеяние играет подчиненную роль. Для света с длиной волны 450-590 нм, что соответствует линиям аргона, глубина проникновения составляет в среднем 0,5-2,5 мм. Как поглощение, так и рассеяние играют здесь значительную роль. Лазерный луч этой длины волны хотя и остается в ткани коллимированным в центре, но он окружен зоной с высоким рассеянием. От 15 до 40% падающего пучка света рассеивается. В области спектра между 590 и 1500 нм, в которую входят линии Nd:YAG-лазера 1,06 и 1,32 мкм, доминирует рассеяние. Глубина проникновения составляет от 2,0 до 8,0 мм. Качество коллимированности излучения утрачивается – формируется конусом диффузного рассеяния. В то время как в УФ диапазоне поглощение зависит от содержания белка, в ИК диапазоне существенное значение имеет содержание воды. Кроме того, гемопротеины, пигменты, другие макромолекулы, такие как нуклеиновые кислоты и ароматические системы поглощают лазерное излучение с различной интенсивностью в зависимости от длины волны. Большинство органических молекул, как и протеины, интенсивно поглощают в УФ диапазоне света (100-300 нм). Оксигенированный гемоглобин интенсивно поглощает начиная с УФ области, включая зеленую и желтую области видимого света и до длины волны 600 нм. Меланин, важнейший эпидермальный хромофор, поглощает во всей видимой области спектра до УФ области. В диапазоне от 600 до 1200 нм излучение глубже проникает в ткань, с минимальными потерями на рассеяние и поглощение. В этом диапазоне можно достигнуть глубоко расположенные объекты. Такие лазеры, как аргоновый лазер, лазер на красителе, Nd:YAG-лазер с удвоением частоты, Nd:YAG-лазер, действует преимущественно на гемоглобин, меланин и другие органические вещества и поэтому имеют коагуляционный эффект. СО2-лазер, генерирующий на длине волны 10,6 мкм, или Er:YAG-лазер с длиной волны генерации 2,9 мкм из-за высокого поглощения водой подходят для рассечения ткани. Значение глубины проникновения излучения указано в таблице 4.


 

 

Таблица 4.

Поглощение лазерного излучения в воде и в крови.

 

В этойтаблице 4 сравнивается количественно средний путь распространения излучения в воде и крови для различных лазеров. Как явствует из таблицы, CO2-лазер имеет проникновение в ткань только 1/1000 см. Вся его мощность преобразуется в поверхностных ячеистых слоях. Напротив, излучение аргонового лазера может беспрепятственно распространяться в воде, но в крови оно полностью поглощается в верхних десятых долях миллиметра.

Nd:YAG-лазер занимается в данном случае промежуточное положение. Для расширения областей применения лазера в медицине важной предпосылкой является, по возможности, более широкое знание спектральных характеристик поглощения различных тканей. На этом основании можно предсказать для определенного типа ткани относительную эффективность существующих лазерных систем и до сих пор не применявшихся длин волн. Для этого используются методы оптической спектроскопии, с помощью которой регистрируются и исследуются спектры вращения, колебания и электронного возбуждения. После различных вспомогательных экспериментов весь исследованный диапазон длин волн на практике делится на ИК область, ближнюю ИК область, видимую область и УФ область. С помощью одного фотометра, как правило, можно зарегистрировать спектры только в пределах одного или двух граничных диапазонов. При возбуждении различных состояний молекулы принимают энергию только в квантованном виде, поэтому поглощение происходит только при определенных частотах. Изображение зависимости интенсивности поглощения от частоты или длины волны определяется как спектр. В спектроскопии тканей имеется несколько специальных проблем. Обычно в спектроскопии поглощения предполагается однородное распределение хромофоров в образце (разбавленные растворы известных концентраций). Только при таком условии строго действует закон Ламберта-Бэра. В тканяхже поглощающие элементы связаны с субъячеечными структурами, здесь нет однородного распределения. Влияние рассеяния должно быть обязательно учтено, как показывает пример с кровью: незначительная глубина проникновения излучения Nd:YAG-лазера объясняется не поглощающими свойствами гемоглобина, а интенсивным рассеянием на клеточных составных частях крови. Так как часто невозможно (а для практической оценки и не требуется) установить различие между долями рассеяния и поглощения при ослаблении излучения, то спектры пропускания следует предпочесть спектрам поглощения. Абсолютное масштабирование при этом невозможно вследствие различной техники подготовки образцов в зависимости от типа ткани и значительного различия свойств биологических образцов. Поэтому возможно только относительное сравнение спектровпропускания для тканей различных типов. В то же время эффективность воздействия излучения различных длин волн на различные ткани не может быть оценена исходя лишь из спектров пропускания. При изображении спектров по оси абсцисс откладывается, обычно, волновое число γ (измеряется в см-1), которое прямо пропорционально энергии кванта, или длина волны λ (нм или мкм), которая обратно пропорциональна энергии. По оси ординат при исследовании поглощения откладывают отношение ослабленного образцом потока излучения φ к падающему потоку излучения φ0. Количественными характеристиками процесса ослабления излучения являются пропускание Т и поглощение А:

Т=φ/φ0;

А=lg(φ/φ0)=lg(1/Т).



Поделиться:


Последнее изменение этой страницы: 2017-02-19; просмотров: 504; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.90.205.166 (0.096 с.)