Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Физические свойства конденсатаСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Конденсатом называют углеводородную смесь (С5 H12 + С6 H14 + высш.), находящуюся в газоконденсатной залежи в газообразном состоянии и выпадающую в виде жидкости при снижении пластового давления до давления начала конденсации и ниже его в процессе разработки залежи. Большое значение имеет такая характеристика газа конденсатных залежей, как давление начала конденсации. Если при разработке газоконденсатной залежи в ней не поддерживать давление, то оно с течением времени будет снижаться и может достигнуть величины меньше давления начала конденсации. В этот момент в пласте начнет выделяться конденсат, что не только приведет к потерям ценных УВ в недрах, но и отразится на подсчете запасов и показателях проектов разработки, поскольку изменится объем пустотного пространства пласта, состав и свойства газа. Важной характеристикой газа газоконденсатных залежей является величина конденсатно-газового фактора, показывающая количество сырого конденсата в см3, приходящегося на 1 м3 отсепарированного газа. Количественное соотношение фаз в продукции газоконденсатных месторождений оценивается газоконденсатным фактором – величиной обратной конденсатно-газовому фактору, показывающей отношение количества добытого (м3) газа (в нормальных атмосферных условиях) к количеству полученного конденсата (м3), улавливаемого в сепараторах. Величина газоконденсатного фактора изменяется для разных месторождений от 1500 до 25000 м3/м3. Под сырым конденсатом подразумевают при стандартных условиях жидкие углеводороды (С5 H12 + высш.) с растворенными в них газообразными компонентами (метаном, этаном, бутаном, пропаном, сероводородом и др.) Стабильный конденсат состоит только из жидких углеводородов – пентана и высших (С5 H12 + высш.). Его получают из сырого конденсата путем дегазации последнего. Температура выкипания основных компонентов конденсата находится в пределах 40 ÷ 200° С. Молекулярная масса – 90-160. Плотность стабильного конденсата в стандартных условиях изменяется от 0,6 до 0,82 г/см3 и находится в прямой зависимости от компонентного углеводородного состава. По количеству конденсата газы газоконденсатных месторождений делятся на газы с низким содержанием конденсата (до 150 см3/м3), средним (150-300 см3/м3), высоким (300-600 см3/м3) и очень высоким (более 600 см3/м3).
ГЛАВА 7. ПОДЗЕМНЫЕ ВОДЫ НЕФТЯНЫХ И ГАЗОВЫХ МЕСТОРОЖДЕНИЙ
Подземные воды встречаются в большинстве нефтяных и газовых месторождений и являются обычным спутником нефти и газа. Часто воды находятся в тех же пластах (коллекторах), где и нефть и газ, в этом случае воды обычно занимают пониженные части пластов. Кроме того, в разрезах месторождений имеются самостоятельные водоносные пласты.
Физические свойства
Плотность воды зависит от ее минерализации, т. е. от количества растворённых в ней солей. Степень минерализации вод обычно выражают солёностью – содержанием растворённых в воде солей, отнесенным к 100 г раствора. Температура воды обычно находится в соответствии с геотермической ступенью данной местности. Однако бывают и отклонения, что чаще всего обуславливается появлением тектонических вод, имеющих более высокую температуру. Определение температуры воды имеет важное практическое значение и используется при решении различных вопросов, в частности, в промысловой практике для суждения о глубине притока вод. С увеличением температуры вода расширяется (выше было отмечено, что при 4° С вода имеет наибольшую плотность) (моё). Коэффициент термического расширения воды (т. е. изменение единицы объема воды при повышении температуры на 1°С) изменяется неравномерно: при 4÷10° С он в среднем равен 6,5÷10-5; при 10÷20° С – 15·10-5, при 20÷30° С – 25·10-5 и при 65÷70°С – 58·10-5. Электропроводность вод зависит от минерализации; минерализованные воды являются проводниками электрического тока, а пресные воды плохо проводят (или почти не проводят) его. Вязкость воды в пластовых условиях значительно меньше вязкости нефти, поэтому вода в этих условиях имеет большую подвижность, чем нефть. Вязкость воды при атмосферных условиях и 20° С равна 1,005 мПа·с. Основным фактором, влияющим на вязкость воды в пластовых условиях, является температура пласта (рис. 4).
Поверхностное натяжение воды имеет важное значение в связи с ее вымывающей способностью. При меньшем поверхностном натяжении вода обладает большей способностью промывать пески и вытеснять из пласта нефть. Величина поверхностного натяжения воды в значительной степени зависит от ее химического состава, и в результате соответствующей химической обработки воды может быть значительно снижена. Объемный коэффициент пластовой воды зависит главным образом от температуры пласта и в меньшей степени от количества растворенного в воде газа (рис. 5). Растворимость газов в воде значительно ниже их растворимости в нефти. При увеличении минерализации воды растворимость газов в воде уменьшается (рис. 6).
Рис. 6. Растворимость (N) естественного газа в чистой воде (при пользовании диаграммой необходимо вводить поправки на минерализацию воды) Рис. 6. Растворимость (N) этана в чистой воде (при пользовании диаграммой необходимо вводить поправки на минерализацию воды)
Сжимаемость воды, т. е. изменение единицы объема воды в пластовых условиях при изменении давления на 0,1 МПа колеблется в пределах (3,7÷5) · 10-4 1/МПа. Сжимаемость газированной воды возрастает с увеличением содержания растворенного в ней газа, причем
βВ1 = βВ (1 + 0,05 r),
где βВ1 – коэффициент сжимаемости воды, содержащей растворенный газ, 1/МПа; βВ – коэффициент сжимаемости чистой воды, 1/МПа; r – количество газа, растворенного в воде, м3/м3. Сжимаемость растворов солей в воде меньше сжимаемости чистой воды, она уменьшается с увеличением концентрации соли.
Химическая характеристика
Воды нефтяных месторождений характеризуются: 1) повышенной минерализацией; 2) наличием хлоридов кальция и натрия или гидрокарбонатов натрия; 3) отсутствием сульфатов или весьма незначительным их содержанием; 4) повышенным содержанием ионов I, Br, N H4; 5) часто присутствием H2 S; 6) наличием солей нафтеновых кислот; 7) наличием растворенных углеводородных газов, реже – гелия и аргона. Формирование подземных вод связано с их проникновением в земную кору с поверхности в капельножидком виде или в виде водяного газа, конденсирующегося под землей в воду. В формировании подземных вод участвуют также и воды, захороненные в морских осадках, а затем преобразованные при диагенезе осадков. Условия формирования различных типов вод весьма разнообразны и характеризуются: 1) взаимодействием воды и горных пород; 2) взаимодействием вод с нефтью и газами; 3) воздействием на воды микробиологических процессов; 4) различными геологическими факторами – литолого-физическим составом пород и их коллекторскими свойствами, тектоникой, температурными условиями и др. Обычно в водах газонефтяных месторождений содержатся следующие компоненты: 1) ионы растворимых солей: анионы – ОН-, Cl-, SO42-, СО32-, НСО3 -; катионы – Н+, К+, Na+, NH4+, Mg2+, Ca2+, Fe2+, Mn2+; 2) растворимые ионы микроэлементов: Br-, I-, B3+, Sr2+; 3) коллоиды: SiO2, Fe2O3, Al2O3; 4) газообразные вещества: CO2, H2S, CH4, H2, N2; 5) органические вещества: нафтеновые кислоты, их соли. Исследования вод нефтяных месторождений показывают, что состав их в одном и том же пласте меняется в зависимости от того, из какой части структуры взят образец воды, – из зоны водонефтяного контакта или из законтурной зоны. Нередко в зоне водонефтяного контакта воды обладают большей минерализацией, чем в зоне, удалённой от контура нефтеносности, поэтому по мере эксплуатации и продвижения краевых вод минерализация их уменьшается. Особенно значительные изменения состава наблюдаются в щёлочных водах, так как на контакте нефть-вода происходит биохимический процесс, обусловливающий частичное восстановление сульфатов, которые нередко содержатся в водах.
|
||||||||
Последнее изменение этой страницы: 2017-02-08; просмотров: 1985; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 52.14.234.146 (0.01 с.) |