Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Потенціал електростатичного поля. Різниця потенціалів. Принцип суперпозиції

Поиск

В лекціях з розділу “Механіка“ потенціальна енергія матеріальної точки або тіла визначалась через роботу переміщення тіла з будь-якої точки поля в деяке фіксоване положення, вибране за нульове положення, тобто

= П. (7.2.1)

 

Для електричних зарядів сила = qo , тому

 

qo = П. (7.2.2.)

 

З рівності (7.2.2) можна зробити висновок, що відношення = const, тобто який би заряд qi не розміщувати в поле іншого заряду, відношення потенціальної енергії заряду qi до величини цього заряду для даної точки поля буде величиною сталою. Цю величину називають потенціалом і позначають буквою j, тобто

 

j = . (7. 2. 3)

 

Потенціал j в будь-якій точці електростатичного поля є скалярною величиною, яка визначається потенціальною енергією позитивного пробного заряду, поміщеного в цю точку.

З урахуванням формули (7.1. 5) потенціал поля точкового заряду q буде дорівнювати

 

j = . (7. 2. 4)

 

При переміщенні одиничного позитивного заряду з точки 1 поля в точку 2 виконану роботу можна виразити спочатку через різницю потенціальних енергій, а потім і через різницю потенціалів поля в цих точках, тобто

 

A1,2 = П1 – П2 = qo (j1 - j2) =qo Dj. (7. 2. 5)

 

Різниця потенціалів в двох точках поля j1 - j2 визначається роботою сил поля по переміщенню точкового позитивного заряду із точки 1 в точку 2, тобто

j1 - j2 = . (7. 2. 6)

 

Якщо вибрати точку 2 за межами поля, скажемо на безмежності, то й потенціал поля там буде дорівнювати нулю. Тому потенціал поля точкового заряду з цих міркувань можна виразити ще й так:

 

j = , (7. 2. 7)

 

де A1,¥ - робота переміщення заряду qo з даної точки 1 в безмежність; qo - точковий позитивний заряд.

Потенціал точкового заряду, так само як і різниця потенціалів, вимірюється в Дж/Кл або вольтах (В).

 

Для системи точкових зарядів потенціал поля в довільний точці поля цих зарядів визначається за допомогою принципу суперпозиції полів, тобто

j = , (7. 2. 8)

 

де jI – потенціал і -го заряду в цій точці поля.

Потенціал поля системи електричних зарядів дорівнює алгебраїчній сумі потенціалів полів всіх цих зарядів. У випадку просторового розміщення системи електричних зарядів, потенціал поля цих зарядів знаходиться шляхом інтегрування.

Розглянемо приклад розрахунку потенціалу просторово розміщених електричних зарядів. Для цього знайдемо потенціал поля рівномірно зарядженого стрижня довжиною l з лінійною густиною зарядів t, в точці А, яка перебуває на продовженні осі стрижня на відстані а від його кінця (рис. 7.3).

Рис 7.3

 

На стрижні виділимо безмежно малу ділянку, довжиною dx із зарядом dq, для якої потенціал в точці А можна записати, як для точкового заряду, а саме

dj = . (7.2.9)

 

Величина точкового заряду dq дорівнює tdx, тому

 

dj = . (7.2.10)

 

Проінтегруємо цей вираз в межах зміни x від а до a+l, тобто

 

j = = ln .

 

Аналогічно можна виконувати розрахунки потенціалу просторово розміщених електричних зарядів та в інших випадках

 



Поделиться:


Последнее изменение этой страницы: 2017-02-05; просмотров: 402; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.129.67.248 (0.006 с.)