Теорема Гаусса і її використання 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Теорема Гаусса і її використання



 

У випадках розрахунків напруженості електричного поля не- точкових зарядів, виникають певні труднощі. В таких випадках напруженість електричного поля розраховують за допомогою методу суперпозиції. Для цього, просторово розміщені заряди ділять на точкові й методом інтегрування (принцип суперпозиції), знаходять відповідну напруженість. Покажемо це на прикладах:

 

Приклад 1. Визначити напруженість електричного поля біля безмежної, рівномірно зарядженої площини з поверхневою густиною зарядів s (рис. 6.7).

Скористаємось формулою напруженості точкового заряду (6.2.6)

 

dE = , (6.3.1)

 

де dq – це заряд заштрихованої безмежно малої ділянки поверхні; x – відстань від цієї ділянки до точки А, в якій розраховується напруженість електричного поля Е.

 

Рис. 6.7

 

З рисунка видно, що x2 = z2 + r2, а dq = rda drs, й dEz = dEcosj.

З урахуванням цих позначень одержуємо:

 

. (6.3.2)

 

Але оскільки соsj = , тому

 

.

 

Інтегруємо цей вираз у межах: для r від 0 до ; для a від 0 до 2p, одержимо:

 

З розрахунків видно, що напруженість електричного поля біля безмежної, рівномірно зарядженої площини з поверхневою густиною зарядів s, визначається досить простою формулою і не залежить від відстані до самої площини

(6.3.3)

Приклад 2. Визначити напруженість електричного поля на відстані а від тонкої, досить довгої, рівномірно зарядженої, із лінійною густиною зарядів t нитки або циліндра (рис 6.8).

Рис. 6.8

 

 

Скористаємось формулою (6.2.6)

 

dE = .

 

З рисунка видно, що: dq = tdl і dS = rda, а також dS = dl·cosa.

З урахуванням цих залежностей одержуємо величину точкового заряду:

dq = . (6.3.4)

 

Тоді напруженість електричного поля у напрямі осі у Ey – буде дорівнювати

 

 

dEy = dEcosa = = .

 

 

Величину радіуса-вектора r виразимо через відстань а і кут a:

r = .

 

З урахуванням останнього одержимо:

 

dEy = . (6.3.5)

 

Інтегруємо останній вираз у межах зміни a від 0 до , помноживши весь вираз на 2 (враховується друга, симетрична частина нитки).

 

.

 

Таким чином одержано досить просту залежність напруженості електричного поля біля довгої, рівномірно зарядженої нитки або циліндра:

 

Е = . (6.3.6)

 

Паралельна складова напруженості Еx, завдяки симетричності нитки, буде дорівнювати нулю.

 

Знайдемо потік вектора напруженості електричного поля крізь замкнену поверхню (рис. 6.9)

 

 

Рис. 6.9

 

, (6.3.7)

 

де - величина площі заштрихованої поверхні, - нормаль до поверхні (одиничний вектор).

З рисунка видно, що

де - тілесний кут.

Площа поверхні кулі (тут є тілесним кутом).

Таким чином одержуємо:

 

. (6.3.8)

 

Інтегруємо цей вираз у межах замкнутої поверхні і повного тілесного кута для цієї поверхні, тобто

 

.

 

Одержаний вираз носить назву теореми Гаусса

 

. (6.3.9)

 

Якщо замкнута поверхня охоплює систему зарядів, теорема Гаусса набуде вигляду

. (6.3.10)

 

Потік вектора напруженості електричного поля крізь довільну замкнуту поверхню дорівнює алгебраїчній сумі всіх зарядів у середині цієї поверхні, поділених на ee0.

Покажемо на прикладах, як використовується теорема Гаусса у найпростіших випадках.

Приклад 1. Електричне поле біля безмежної, рівномірно зарядженої, із поверхневою густиною зарядів σ, площини (рис. 6.10).

Рис. 6.10

 

На рисунку заряджена площина спроектована перпендикулярно до площини листка. Замкнена поверхня є циліндром із площею торців S. Потік вектора напруженості в даному випадку слід розрахувати лише крізь торці. Лінії напруженості електричного поля паралельні до бокової поверхні, а тому потоку не створюють, тобто

 

. (6.3.11)

За теоремою Гаусса

. (6.3.12)

 

Прирівнявши праві сторони (6.3.11) і (6.3.12) одержимо:

 

.

 

Цей висновок збігається з формулою (6.3.3).

 

Приклад 2. Електричне поле на відстані a від довгої, рівномірно зарядженої з лінійною густиною зарядів τ, нитки (рис. 6.11).

 

Рис. 6.11

 

На рисунку замкнуту поверхню вибрано у вигляді циліндра радіусом а і довжиною h. Потік силових ліній слід розглядати лише крізь бокову поверхню, так як торці перпендикулярні до нитки й паралельні до напрямку силових ліній електричного поля. (Потік крізь торці в цьому випадку дорівнює нулю).

. (6.3.13)

 

За теоремою Гаусса

 

. (6.3.14)

 

Прирівнюємо праві частини (6.3.13) і (6.3.14), одержимо

 

= .

Звідки

, (6.3.15)

 

що збігається з формулою (6.3.6)

 

Висновок. Теорема Гаусса значно спрощує розрахунки, але має дуже вузькі рамки використання. Більш загальним, універсальним методом розрахунків напруженості електричного поля є метод суперпозиції, який у кінцевому випадку зводиться до інтегрування.

 

ЛЕКЦІЯ 7

 

ПОТЕНЦІАЛ ЕЛЕКТРОСТАТИЧНОГО ПОЛЯ

7. 1. Циркуляція вектора напруженості.Теорема про циркуляцію вектора напруженості. Потенціальна енергія заряду.



Поделиться:


Последнее изменение этой страницы: 2017-02-05; просмотров: 375; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.119.111.9 (0.016 с.)