Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Режимы приварки стальной лентыСодержание книги
Поиск на нашем сайте
Наличие в чугуне значительного содержания углерода и низкая его вязкость вызывают значительные трудности при восстановлении деталей из этого материала. Быстрое охлаждение чугуна приводит к образованию в околошовной зоне твердых закалочных структур. Местный переход графита в цементит, который может произойти при расплавлении чугуна, приводит к образованию структуры белого чугуна. В этих зонах металл тверд и хрупок. Разница в коэффициентах линейного расширения серого и белого чугуна является причиной образования внутренних напряжений, что приводит к появлению трещин. Выгорание углерода и кремния в процессе сварки приводит к тому, что сварочный шов получается пористым и загрязненным шлаковыми включениями. Они появляются в результате неполного выделения газов и шлаков из-за быстрого перехода чугуна из жидкого состояния в твердое. Таким образом, трудность сварки чугунных деталей вызывается следующими основными причинами: отсутствие площадки текучести у чугуна, хрупкость и небольшой предел прочности на растяжение вызывает образования трещин в процессе сварки; отсутствие переходного пластического состояния при нагреве до плавления. Текучесть чугуна в процессе сварки затрудняет восстановление деталей даже с небольшим уклоном от горизонтального положения; получение отбеленных участков карбида железа Fe3С и высокоуглеродистых сталей, которые трудно поддаются механической обработке. При восстановлении чугунных деталей можно применить горячий и холодный способы сварки. Горячая сварка чугуна — процесс, который предусматривает нагрев детали (в печи или другими способами) до температуры 650...680°С. Температура детали во время сварки должна быть не ниже 500 °С. Такие температуры позволяют: задержать охлаждение сварочной ванны, что способствует выравниванию состава металла ванны; освободить свариваемую деталь от внутренних напряжений литейного и эксплуатационного характера; предупредить появление сварочных напряжений и трещин. Для деталей с большой жесткостью (блок цилиндров и другие корпусные детали) при сварке обязателен общий нагрев. В процессе сварки происходят структурные преобразования с перераспределением внутренних напряжений (термическое воздействие). Металл, на который непосредственно действует сварочная дуга, плавится, образуя жидкую ванну, а тот, который соприкасается со сварочной ванной, нагревается вследствие теплоотдачи. В результате скорости нагрева и охлаждения отдельных участков зоны термического влияния при сварке неодинаковы. Металл сварочной ванны при охлаждении кристаллизуется (с большой скоростью) в тонкий слой первого участка зоны термического влияния. Происходит уменьшение объема за счет усадки на 1 %. Этот слой первого участка связан с основным металлом детали и твердым металлом шва, что мешает нормальной усадке и приводит к возникновению напряжений растяжения и образованию трещин. Усадка во время охлаждения сокращает длину валика (валик соединен с основным металлом), а основной металл детали растягивает его. Этот процесс является следствием образования поперечных трещин. Для предотвращения этого процесса необходимо: обеспечить достаточную пластичность наплавленного шва (подобрать соответствующие присадочный материал, обмазку и режимы сварки); проковывать швы во время кристаллизации; равномерно нагревать и особенно охлаждать как шов, так и свариваемую деталь; сварку выполнять на постоянном токе обратной полярности («+» — электрод, «—» — деталь) и малой силы (25...30 А на 1 мм диаметра электрода); наплавлять валики длиной 30...40 мм; применять сварку отжигающими валиками и многослойным швом. Если при сварке чугуна использовать электрод из низкоуглеродистой стали, то металл шва получится высокоуглеродистым (т. е. будет отличаться высокими хрупкостью и твердостью). Количество углерода в металле шва зависит от геометрии шва, в частности, отношения h1/h2, где h1 — глубина проплавления; h2 — усиление шва (рис. 13.12). Чем меньше значение этого отношения, тем меньше в металл шва поступает расплавленного чугуна детали и тем ниже содержание в шве углерода. Например, если в чугуне около 3 % углерода, то в металле шва в зависимости от h1углерода будет 1,5...2,0% (в нижней части больше, чем в верхней). Снижают содержание углерода в наплавленном слое за счет уменьшения силы сварочного тока (глубины проплавления чугуна h1), подбора компонентов покрытия электрода и многослойности сварного шва. Изменяя состав и толщину обмазки сварочной проволоки, скорость сварки и силу тока, можно получить стальной шов с разным содержанием углерода и разной твердости — от закаленной высокоуглеродистой стали до мягкой отпущенной низкоуглеродистой.
Горячая сварка чугуна предполагает необходимость применения специального нагревательного оборудования: термические и нагревательные печи, кожухи, термостаты и т. д. Поэтому этот способ сварки применяют только в тех случаях, когда необходимо получить наплавленный металл, близкий по структуре, прочности и износостойкости к основному металлу детали. При сварке необходимо обязательно применять флюс, который выполняет следующие функции: растворяет образующиеся оксиды кремния и марганца, переводя их в шлак; окисляет и частично растворяет графитные включения чугуна, находящиеся на свариваемых поверхностях; образует микроуглубления, которые повышают свариваемость чугуна; предохраняет от окисления расплавленную ванну; увеличивает текучесть сварочных шлаков. В качестве флюса применяют техническую безводную буру (Ыа2В407). Бура в чистом виде для сварки не пригодна, так как высокая температура ее плавления вызывает образование в сварочной ванне густых шлаков, которые плохо всплывают на поверхность металла, в результате чего образуются шлаковые раковины. Применение в качестве флюса смеси из 50 % переплавленной измельченной буры и 50 % кальцинированной соды увеличивает текучесть шлаков и расплавленного металла в ванне, улучшает качество сварки. Лучшие результаты дает флюс ФСЧ-1 следующего состава (% по массе): буры — 23, кальцинированной соды — 27, азотнокислого натрия — 50. Кромки трещины для сваривания готовят механическим способом или оплавлением металла газовой горелкой с избытком кислорода. Перед сваркой подогретые кромки и конец стержня покрывают слоем флюса. Пламя горелки должно быть строго нейтральным. В ванну расплавленного металла вводят присадочную проволоку с флюсом, подогретые перед этим до температуры плавления. Затем сварщик концом чугунной проволоки воздействует на кромки ванны, делая круговые движения. Горячей сваркой ацетиленокислородным пламенем с присадкой чугуна рекомендуется восстанавливать блоки цилиндров двигателей и других корпусных деталей при наличии трещин на ребрах жесткости. Газовую сварку чугуна цветными сплавами без подогрева детали выполняют в сочетании с дуговой сваркой и широко применяют в ремонтном производстве для сварки трещин на обрабатываемых поверхностях корпусных деталей. Присадочный материал — латунь. Температура плавления латуни ниже температуры плавления чугуна (880...950°С), поэтому ее можно применить для сварки, не доводя чугун до плавления и не вызывая в нем особенных структурных изменений и внутренних напряжений. Использование этого процесса позволяет получить сварочные швы плотные, легко поддающиеся обработке. При сварке трещин в чугунных деталях выполняют следующие операции: снятие с кромок трещин фасок с углом разделки 70... 80°; грубая обработка фасок (желательно с образованием насечки); очистка места сварки от грязи, масла и ржавчины; подогрев подготовленных к сварке мест пламенем газовой горелки до температуры 900...950°С; нанесение на подогретую поверхность слоя флюса; нагрев в пламени горелки конца латунной проволоки; натирание латунной проволокой горячих кромок трещины (латунь должна покрывать фаски тонким слоем); сварка трещины; медленный отвод пламени горелки от детали; покрытие шва листовым асбестом. При холодной сварке чугуна деталь не нагревают (возможен подогрев не выше 400 "С для снятия напряжения и предупреждения возникновения сварочных напряжений). Сварочная ванна имеет небольшой объем металла и быстро твердеет. Способ получил более широкое применение по сравнению с горячей сваркой из-за простоты выполнения. В зоне сварного шва происходят отбеливание и закалка с одновременным ростом внутренних напряжений, которые могут привести к образованию трещин. Высота сварочного шва определяется значением (h1+ h2), не одинакова для электродов с разными покрытиями и находится в пределах 4...7 мм. Холодная сварка применяется для устранения трещин и заварки пробоин в тонкостенных корпусных и крупногабаритных чугунных деталях, которые требуют последующей механической обработки и эксплуатируются под нагрузкой при тепловом воздействии. Заварка трещин в тонких (до 10 мм) ненагруженных стенках осуществляется без разделки кромок. Процесс заварки в этом случае проводят в следующем порядке: поверхность детали очищают на расстоянии 25 мм от краев трещины; концы трещины обваривают за два прохода (рис. 13.13, а); дугу возбуждают на расстоянии 10... 12 мм от одного конца трещины и ведут сварку в направлении другого конца трещины (валик наваривают на расстоянии 10... 12 мм от конца трещины); не прерывая дуги, ведут сварку в обратном направлении, вторым слоем перекрывая первый; делят трещину на участки длиной 30...50 мм; отступив от конца трещины на выбранную длину участка, наплавляют с двух сторон трещины (отступая от ее краев на 1... 1,5 мм) подготовительные валики 1, 2 и 3, 4 (ширина валика равна толщине стенки детали), причем валики 2 и 4 не должны соприкасаться со стенками детали и перекрывать валики, которые лежат под ними; очистка наплавленных вдоль кромок трещины валиков от шлаков; наплавка валиков 5 и 6 (за два прохода, не прерывая дуги), образуя шов, закрывающий трещину; проковы-вание молотком участка шва (после окончания сварки), не зачищая шлака. В таком же порядке сваривают и другие участки трещины (II, III, IV, V ). Сварку трещин в толстостенных деталях (рис. 13.13, б), которые в дальнейшем подвергаются механической обработке или работают под нагрузкой, проводят с разделкой кромок. Ширина разделки краев трещины под сварку на поверхности детали должна быть в 2 раза больше ее толщины, а глубина разделки на 2...3 мм меньше этой толщины. Кромки трещины разделывают фрезерованием или слесарным способом вручную. При такой технологии облегчается сварка деталей в вертикальной плоскости. Подготовительные валики на кромки трещины наплавляют раздельно: сначала два ряда валиков 1—8 на одну сторону среза вверх на участке протяженностью 30...50 мм, а затем — на другую сторону среза валики 9—17. Каждый предыдущий валик должен частично перекрываться последующим. После наплавки первого слоя очищают шлак и наплавляют второй. Подготовительные валики второго слоя не должны соприкасаться с основным металлом. Рис. 13.13. Схема наложения валиков при сварке чугунных корпусных деталей: а — трещина в тонкостенной детали (без разделки кромок трещины); б — трещина в толстостенной детали (с разделкой кромок трещины); В — толщина стенки детали; 1, 2, 3,..., 30 — номера валиков; I, II, III, IV, V — номера участков
Так же наплавляют подготовительные валики и на других участках, дают им охладиться до температуры 30... 50°С, счищают с них шлак и в такой же последовательности, как и при наплавке скосов, соединяют валики центральными (соединительными) валиками. Заполнение шва на каждом участке проводят с перерывом для охлаждения. Холодная сварка может осуществляться: электродами МНЧ-1 (63% № + 37% Си) со специальным фтористо-кальциевым покрытием. Процесс сварки выполняется электродами диаметром 3...4 мм на постоянном токе 140... 150А обратной полярности, короткой дугой, участками 20...30 мм, которые сразу же проковываются. Вместо медно-никелевых электродов можно также использовать железоникелевые электроды типа ЖНБ; электродами ЦЧ-4, представляющими собой сварочную проволоку Св-08 или Св-08А с фтористо-кальциевым покрытием, содержащим титан или ванадий, которого в наплавленный металл переходит до 9,5%. Процесс ведется электродами диаметром 3...4 мм на постоянном токе 120... 150А обратной полярности при напряжении 20 В. Перед сваркой рекомендуется подогреть деталь до 150...200°С, а после наложения валиков сразу же их проковывать; электродами ОЗЧ-1, представляющими собой медную электродную проволоку с фтористо-кальциевым покрытием, содержащим железный порошок. Процесс сварки рекомендуется вести на постоянном токе 150... 160А обратной полярности и напряжении 20В, короткой дугой, небольшими участками по 30...60 мм. После сварки каждый участок необходимо проковывать и продолжать ее после охлаждения шва до 50...60°С. Особенности сварки деталей из алюминия и его сплавов. Особенности сварки этих деталей состоят в следующем: очень плохая сплавляемость алюминия (температура плавления алюминия 658 °С) из-за образования на его поверхности тугоплавкой окисной пленки (А1203), температура плавления которой 2050°С. Окислы снижают механическую прочность деталей. Для их удаления применяют флюсы типа АФ-4А, в состав которых входят хлористый натрий (28%), хлористый калий (50%), хлористый литий (14%) и фтористый натрий (8%); при нагреве до 400...450°С алюминий сильно теряет свою прочность, и деталь может разрушиться даже от легкого удара; алюминий, как и чугун, не имеет пластического состояния и при нагреве сразу переходит из твердого состояния в жидкое. Алюминиевые сплавы в расплавленном состоянии активно растворяют водород, который при быстром охлаждении не успевает покинуть расплавленный металл и создает в нем поры и раковины. Источник появления водорода — это влага, для удаления которой рекомендуется прогреть детали; коэффициент линейного расширения алюминия в 2, а теплопроводность в 3 раза больше, чем у стали, что способствует появлению значительных внутренних напряжений, которые приводят к деформациям в свариваемых деталях. Для уменьшения внутренних напряжений целесообразно подогревать перед сваркой детали до температуры 250... 300 °С и медленно охлаждать после сварки. Для деталей из алюминия и его сплавов рекомендуются следующие способы сварки: неплавящимся вольфрамовым электродом в среде аргона (аргонодуговая сварка). В качестве присадочного материала используют сплавы алюминия. В зависимости от толщины деталей используют электроды диаметром 1...5 мм, силу сварочного тока — 45... 280А, напряжением — 22... 24В. Расход аргона колеблется в пределах 4... 12 л/мин. Сварку ведут на переменном токе без применения флюса; электродами ОЗА-2 (сплава алюминия) и ОЗА-1 (технического алюминия) на постоянном токе обратной полярности, короткой дугой (электродуговая сварка). Сила тока выбирается из расчета 35...45А на 1 мм диаметра электрода. Стержень электрода изготавливают из алюминиевой проволоки. Электрод имеет покрытие АФ-4А; ацетиленокислородным нейтральным пламенем (газовая сварка) с использованием флюса АФ-4А. Присадочный материал должен быть того же состава, что и основной металл. В момент расплавления основного и присадочного материалов пленку окислов разрывают с помощью стального крючка.
|
||||||||||||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2017-02-05; просмотров: 513; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.148.115.210 (0.008 с.) |