Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Кризис классического рационализма. Формирование неклассической научной картины мира. Основные положения и принципы неклассического рационализма.

Поиск

Примерно с середины XIX в. западная философия начинает претерпевать значительные изменения. Причинами их явились со­циально-исторические процессы этого периода, ряд научных от­крытий и проблем, а также особенности философского мышления Нового времени. В классической западной философии XVII- начала XIX в. гос­подствовала рациональная парадигма. Корни ее уходят в глуби­ны античности. Активное формирование происходит в период Воз­рождения. С началом Нового времени она укрепляется, а в XVIII в. становится доминирующей. Ее краеугольный камень - принцип разумности бытия, когда разум понимается достаточно абстрактно и широко не только как индивидуальный человеческий, но и как внеиндивидуальный - Мировой Разум, Божественный Разум, - а природные законы и духовная культура - как проявление природного и человеческого разума. Этот «камень» покоился, образно говоря, на трех «китах», которые составляли основу рациональной парадигмы. Они так или иначе признавались подавляющим боль­шинством европейских философов. Во-первых, предполагалось, что природа и общество устроены разумно и управляются не слепыми, но разумными законами (бо­жественными, природными, духовными и т.д.). Во-вторых, преобладало убеждение, что эти законы познаваемы человеком (гносеологический оптимизм) с помощью разума или чувственного опыта, результаты которого все же осмысливает опять разум. В-третьих, философы не сомневались, что, используя получен­ные знания, возможно заставить природу служить человеку, а об­щество и человека разумно усовершенствовать. Научный разум, полагали просветители, способен разрешить все проблемы. При этом следует заметить, что наука к тому времени уже практически отказалась от ряда фундаментальных идей эзотерической и рели­гиозной философии, с которой она решительно разрывала свои отношения. Парадигма — общая модель, система принципов и образцов постановки, решения или понимания какой-либо проблемы.

В конце XIX – начале XX века считалось, что научная картина мира практически построена, и если предстоит какая-либо работа исследователям, то это уточнение некоторых деталей. Но вдруг последовал целый ряд открытий, которые никак в нее не вписывались.

В 1896 году французский физик А. Беккерель (1852 – 1908 гг.) открыл явление самопроизвольного излучения урановой соли, природа которого не была понята. В поисках элементов, испускающих подобные «беккерелевы лучи», Пьер Кюри и Мария Складовская-Кюри в 1898 году открывают полоний и радий, а само явление называют радиоактивностью. В 1897 г. английский физик Дж. Томпсон открывает составную часть атома – электрон, создает первую, но очень недолго просуществовавшую модель атома. В 1900 году немецкий физик М. Планк предложил новый подход: рассматривать энергию электромагнитного излучения как дискретную величину, которая может передаваться только отдельными, хотя и очень небольшими порциями – квантами. На основе этой гениальной догадки ученый не только получил уравнение теплового излучения, но она легла в основу квантовой теории.

Английский физик Э. Резерфорд (1871 – 1937 гг.) в 1906 г. экспериментально установил, что атомы имеют ядро, в котором сосредоточена вся их масса, а в 1911 году создал планетарную модель строения атома, согласно которой электроны движутся вокруг неподвижного ядра и в соответствии с законами классической электродинамики непрерывно излучают электромагнитную энергию. Но ему не удается объяснить, почему электроны, двигаясь вокруг ядра по кольцевым орбитам и непрерывно испытывая ускорение, не приближаются к ядру и не падают на его поверхность.

Датский физик Нильс Бор, исходя из модели Резерфорда и модифицируя ее, ввел постулаты, утверждающие, что в атомах имеются стационарные орбиты, при движении по которым электроны не излучают энергии, ее излучение происходит только в тех случаях, когда электроны переходят с одной стационарной орбиты на другую, при этом происходит изменение энергии атома, создал квантовую модель атома. Она получила название Резерфорда – Бора. Это была последняя наглядная модель атома.

В 1924 году французский физик Луи де Бройль выдвинул идею о двойственной, корпускулярно-волновой природе не только электромагнитного излучения, но и других микрочастиц. В 1925 году швейцарский физик В. Паули сформулировал принцип запрета: ни в атоме, ни в молекуле не может быть двух электронов, находящихся в одинаковом состоянии.

В 1926 году австралийский физик-теоретик Э. Шредингер вывел основное уравнение волновой механики, а в 1927 г. немецкий физик В. Гейзенберг – принцип неопределенности, утверждавший: значения координат и импульсов микрочастиц не могут быть названы одновременно и с высокой степенью точности.

В 1929 г. английский физик П. Дирак заложил основы квантовой электродинамики и квантовой теории гравитации, разработал релятивистскую теорию движения электрона, на основе которой в 1931 году предсказал существование позитрона – первой античастицы. Античастицами назвали частицы, подобно своему двойнику, но отличающиеся от него электрическим зарядом. В 1932 г. американский физик К. Андерсон открыл позитрон в космических лучах.

В 1934 г. французские физики Ирен и Фредерик Жолио-Кюри открыли искусственную радиоактивность, а в 1932 г. английский физик Дж. Чедвик – нейтрон. Создание ускорителей заряженных частиц способствовало развитию ядерной физики, была выявлена неэлементарность элементарных частиц. Но поистине революционный переворот в физической картине мира совершил физик-теоретик А. Эйнштейн (1879 – 1955 гг.), создавший специальную (1905 г.) и общую (1916 г.) теорию относительности.

В механике Ньютона существуют две абсолютные величины – пространство и время. Пространство неизменно и не связано с материей. Время – абсолютно и никак не связано ни с пространством, ни с материей. Эйнштейн отвергает эти положения, считая, что пространство и время органически связаны с материей и между собой. Тем самым задачей теории относительности становится определение законов четырехмерного пространства, где четвертая величина координат – время. Эйнштейн, приступая к разработке своей теории, принял в качестве исходных два положения: скорость света в вакууме неизменна и одинакова во всех системах, движущихся прямолинейно и равномерно друг относительно друга, и для всех инерциальных систем все законы природы одинаковы, а понятие абсолютной скорости теряет значение, так как нет возможности ее обнаружить. За открытие фотоэффекта в 1921 году ему была присуждена Нобелевская премия.

Если в классической науке универсальным способом задания объектов теории были операции абстракции и непосредственной генерализации наличного эмпирического материала, то в неклассической науке введение объектов осуществляется на пути математизации, которая выступает основным индикатором идей в науке, приводящих к созданию новых ее разделов и теорий. Математизация ведет к повышению уровня абстракции теоретического знания, что влечет за собой потерю наглядности.

Переход от классической к неклассической науке характеризует та революционная ситуация, которая заключается во вхождении субъекта познания в «тело» знания в качестве его необходимого компонента. Изменяется понимание предмета знания: им стала теперь не реальность «в чистом виде», как она фиксируется живым созерцанием, а некоторый ее срез, заданный через призму принятых теоретических и операционных средств и способов ее освоения субъектом. Поскольку о многих характеристиках объекта невозможно говорить без учета средств их выявления, поскольку порождается специфический объект науки, за пределами которого нет смысла искать подлинный его прототип. Выявление относительности объекта к научно-исследовательской деятельности повлекло за собой то, что наука стала ориентироваться не на изучение вещей как неизменных, а на изучение тех условий, попадая в которые они ведут себя тем или иным образом.

Научный факт перестал быть проверяющим. Теперь он реализуется в пакете с иными внутритеоретическими способами апробации знаний: принцип соответствия, выявление внутреннего совершенства теории. Факт свидетельствует, что теоретическое предположение оправдано для определенных условий и может быть реализовано в некоторых ситуациях. Принцип экспериментальной проверяемости наделяется чертами фундаментальности, то есть имеет право не «интуитивная очевидность», а «уместная адаптационность».

Концепция монофакторного эксперимента заменилась полифакторной: отказ от изоляции предмета от окружающего воздействия якобы «чистоты рассмотрения», признание зависимости определенности свойств предмета от динамичности и комплексности его функционирования в познавательной ситуации, динамизация представлений о сущности объекта – переход от исследования равновесных структурных организаций к анализу неравновесных, нестационарных структур, ведущих себя как открытые системы. Это ориентирует исследователя на изучение объекта как средоточия комплексных обратных связей, возникающих как результирующая действий различных агентов и контрагентов.

На основе достижений физики развивается химия, особенно в области строения вещества. Развитие квантовой механики позволило установить природу химической связи, под последней понимается взаимодействие атомов, обуславливающее их соединение в молекулы и кристалы. Создаются такие химические дисциплины, как физикохимия, стереохимия, химия комплексных соединений, начинается разработка методов органического синтеза.

Не менее значительные достижения были отмечены в области астрономии. Под Вселенной понимается доступная наблюдению и исследованию часть мира. Здесь существуют большие скопления звезд – галактики, в одну из которых – Млечный Путь – входит Солнечная система. Наша Галактика состоит из 150 миллиардов звезд, среди которых Солнце, галактические туманности, космические лучи, магнитные поля, излучения. Возраст Солнечной системы около 5 миллиардов лет. На основании «эффекта Доплера» (австрийского физика и астронома) было установлено, что Вселенная постоянно расширяется с очень высокой скоростью.

Астрономы и астрофизики пришли к выводу, что Вселенная находится в состоянии непрерывной эволюции. Звезды, которые образуются из газово-пылевой межзвездной среды, в основном, из водорода и гелия, под действием сил гравитации различаются «по возрасту». Причем образование новых звезд происходит и сейчас.

В период неклассической картины мира зарождаются две противоположные друг другу мировоззренческие позиции: сциентизм и антисциентизм. Существуют они и в настоящее время.

Сциентизм – мировоззренческая позиция, в основе которой лежит представление о научном знании как о наивысшей культурной ценности и достаточном условии ориентации человека в мире. Идеалом для сциентизма выступает не всякое научное знание, а прежде всего результаты и методы естественнонаучные познания. Его представители исходят из того, что именно этот тип знания аккумулирует в себе наиболее значимые достижения всей культуры, что он достаточен для обоснования и оценки всех фундаментальных проблем человеческого бытия, для выработки эффективных программ деятельности.

Сциентизм выдвигает науку в качестве абсолютного эталона всей культуры, тогда как антисциентизм третирует научное знание, возлагая на него ответственность за различные социальные антагонизмы. Конкретными проявлениями сциентизма служат концепция науки, развиваемая в рамках современных школ неопозитивизма, технократические тенденции, а также устремления ряда представителей гуманитарного знания, пытающихся развивать социальное познание строго по образцу естественных наук.

В качестве осознанной ориентации сциентизм утвердился в западной культуре в конце XIX века, причем одновременно возникла и противоположная мировоззренческая позиция – антисциентизм. Эта концепция подчеркивает ограниченность возможностей науки, а в своих крайних формах толкует ее как силу, чуждую и враждебную подлинной сущности человека.

Противоборство сциентизма и антисциентизма приняло особенно острый характер в условиях научно-технических революций ХХ века. С одной стороны, научный прогресс открыл все более широкие возможности преобразования природной и социальной действительности, с другой – социальные последствия развития науки оказались далеко не однозначными, а в современном обществе нередко ведут к обострению коренных противоречий общественного развития. Именно противоречивый характер социальной роли науки и создает питательную почву для этих двух мировоззренческих концепций.

Характерное для классического этапа стремление к абсолютизации методов естествознания, выразившееся в попытках применения их в социально-гуманитарном познании, все больше и больше выявляло свою ограниченность и односторонность. Наметилась тенденция формирования новой исследовательской парадигмы, в основании которой лежит представление об особом статусе социально-гуманитарных наук.

Как реакция на кризис механистического естествознания и как оппозиция классическому рационализму в конце XIX века возникает направление «философия жизни». Здесь жизнь понимается как первичная реальность, целостный органический процесс, для познания которой неприемлемы методы научного познания, а возможны лишь внерациональные способы – интуиция, понимание, вживание, вчувствование и другие.

Например, немецкий социолог, историк и экономист Макс Вебер (1864 – 1920 гг.) не разделял резко естественные и социальные науки, а подчеркивал их единство и некоторые общие черты. Предметом социального познания для Вебера является «культурно-значимая индивидуальная деятельность». Социальные науки стремятся понять ее генетически, конкретно-исторически, не только какова она сегодня, но и почему она сложилась такой, а не иной. Вебер отдает предпочтение причинному объяснению по сравнению с законом. Для него знание законов не цель, а средство исследования, которое облегчает сведение культурных явлений к их конкретным причинам, поэтому законы применимы настолько, насколько они способствуют познанию индивидуальных связей. Особое значение для него имеет понимание как своеобразный способ постижения социальных явлений и процессов.

Начиная с Макса Вебера намечается тенденция на сближение естественных и гуманитарных областей знания, что является характерной чертой постнеклассического становления науки.

Постнеклассический тип научной рациональности

Современная наука, концентрирующая внимание на таких типах объектов, как сложные саморазвивающиеся системы, в которые включен человек, требует новой методологии, учитывающей аксиологические и социальные факторы. Научная рациональность является одной из доминирующих ценностей культуры, однако тип научной рациональности должен будет меняться. Сегодня научные сообщества пересматривают свое отношение к природе как к бесконечному резервуару, выступающему чем-то внешним для человека. Складывается новое понимание субъекта, согласно которому человек является частью биосферы как целостного организма.

Традиционно наука и техника считались морально нейтральными, а ученый в глазах общества не нес ответственности за результаты применения своих разработок. Вместе с тем их результаты и достижения могут быть использованы как во благо человеку, так и во зло ему.

В настоящее время во многих странах активно обсуждаются этические кодексы ученого, инженера. Жизненно важной стала проблема морального разума. Б. Паскаль назвал разум "логикой сердца". В центре внимания морального разума должно стоять предотвращение ущерба или вредных последствий для жизни на Земле. В свое время Эйнштейн отмечал, что проблема нашего времени - не атомная бомба, проблема нашего времени - человеческое сердце.

В связи с этим трансформируется идея "ценностно нейтрального исследования". Объективно истинное объяснение и понимание применительно к "человекомерным" объектам (медико-биологическим объектам, объектам экологии, объектам биотехнологии, системам человек-машина) не только допускают, но и предполагают включение аксиологических факторов (аксиология – раздел философии, в котором исследуется природа, происхождение, развитие и роль ценностей в отношениях человека к миру) в состав объясняющих положений.

Если классическая наука была ориентирована на постижение все более сужающегося изолированного фрагмента действительности, выступающего в качестве предмета той или иной научной дисциплины, то специфику науки современной эпохи определяют комплексные исследовательские программы, в которых принимают участие специалисты различных областей знания.

Объектами современных междисциплинарных исследований все чаще становятся уникальные исследования, характеризующиеся открытостью и саморазвитием. Такого типа объекты постепенно начинают определять и характер предметных областей основных фундаментальных наук, детерминируя облик современной постнеклассической науки.

Ориентация современной науки на исследование сложных исторически развивающихся систем существенно перестраивает идеалы и нормы исследовательской деятельности. В недрах науки формируются новые стратегии исследования, в частности синергетическая. С идеалом строения теории как аксиоматически дедуктивной системы все больше конкурируют теоретические описания, основанные на использовании метода аппроксимации; теоретические схемы, использующие компьютерные программы, и т.д. Естествознание все шире привлекает принципы исторической реконструкции, которая выступает особым типом теоретического знания, ранее применявшегося преимущественно в гуманитарных науках (истории, археологии, герменевтике).

Человечество вступило в непростую эпоху глубоких перемен. Перемен во всем: в стиле жизни и в стиле мышления, в системе воззрений и системе ценностей. Эти изменения не могли не затронуть науку и ту сферу интеллектуальной деятельности, которая занята осмыслением науки - философию. Многие выдающиеся естествоиспытатели отмечают важную роль философии науки для прогресса естествознания. Эта роль не всегда была однозначной. Например, вторжение идеологии в научный рационализм принесло науке немало вреда. Тем не менее, развитие философии науки с полной определенностью показало, что её контакт и диалог с наукой возможны и необходимы.

В ходе диалога возникают острые дискуссии по вопросам, которые до конца не исследованы, например, некоторые из них:

- Можно ли утверждать, что наука ответственна за кризис культуры? Или она препятствовала этому кризису?

- Каковы должны быть взаимоотношения науки и интеллектуальных образований, претендующих на место науки в современной культуре (альтернативного знания, паранауки, теософии и т.д.)?

- Как относится научный рационализм к постмодернистскому представлению о принципиальном плюрализме концепций и мнений?

- Что такое интернет?

- Можно ли сказать, что возникающий тип научной рациональности не полностью, но в своих существенных чертах, подобен тому, который уже существовал в античности?

- Какие смысложизненные ориентиры должны измениться в самой культуре современной цивилизации, чтобы создать предпосылки для решения глобальных проблем и реализации нового типа цивилизационного развития?

Отвечая на эти вопросы, мы пытаемся понять, как в XXI веке будет изменяться научная рациональность.

Итак, в постнеклассической науке идеи историзма и эволюции сливаются в общую картину глобального эволюционизма; объектом науки становятся "человекоразмерные системы", а в состав объясняющих положений включаются социальные цели и ценности.



Поделиться:


Последнее изменение этой страницы: 2017-02-05; просмотров: 1794; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.145.41.108 (0.011 с.)