![]() Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву ![]() Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Лекции по ТОЭ/ №4 Классический метод расчета переходных процессов.Содержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте Переходные процессы в любой электрической цепи можно описать системой дифференциальных уравнений, составленных для схемы цепи по законам Кирхгофа. В математике известно несколько методов решения систем дифференциальных уравнений: классический, операционный, численный и др. Название метода расчета переходных процессов адекватно названию математического метода решения системы дифференциальных уравнений, которыми описывается переходные процессы. Исключая из системы дифференциальных уравнений Кирхгофа лишние переменные, получим в результате для искомой функции x(t) неоднородное дифференциальное уравнение n-го порядка: где, Из курса математики известно, что решение (общий интеграл) линейного неоднородного дифференциального уравнения состоит из суммы двух решений: а) x'(t) - полного решения однородного (без правой части) дифференциального уравнения и б) x"(t) - частного решения неоднородного дифференциального уравнения для t= ∞: x(t)=x'(t)+x"(t) Вид частного решения x"(t) для t = ∞ определяется источниками энергии и соответствует значению искомой функции в установившемся послекоммутационном режиме: x"(t)=xy(t). В электротехнике эта составляющая решения получила название установившейся. Полное решение однородного дифференциального уравнения имеет вид: где Эта составляющая решения не зависит от источников энергии, в электротехнике она получила название свободной: x'(t)=xсв(t). Таким образом, решение для искомой функции (тока, напряжения) может быть представлено в принятой в электротехнике форме: Физический смысл имеет только полное решение для искомой функции x(t), а ее отдельные составляющие xy(t) и xсв(t) являются расчетными величинами. Метод расчета переходного процесса, заключающийся в решении неоднородного дифференциального уравнения классическим методом математики, получил название классического. Расчет переходного процесса классическим методом состоит из следующих составных частей или этапов: а) расчет установившейся составляющей xy(t); Следует отметить, что расчет переходного процесса классическим методом выполняется не в строгом соответствии с математическим методом решения неоднородного дифференциального уравнения. Физические законы электротехники позволяют существенно упростить это решение. Лекции по ТОЭ/ №5 Определение установившейся составляющей xy(t). Как известно, установившаяся составляющая искомой функции xy(t), являясь частным решением неоднородного дифференциального уравнения при t=∞, соответствует значению искомой функции в установившемся после коммутации режиме. Определение этой составляющей математическим методом из решения дифференциального уравнения довольно сложно и трудоемко. Гораздо проще найти эту функцию инженерным методом путем расчета схемы цепи в установившемся режиме после коммутации, что и делают на практике. Пример. Определить установившуюся составляющую для тока iу в схеме рис. 58.1 при заданных значениях параметров элементов: R1=50 Ом, L=100 мГн, R2=100 Ом, C=50мкФ, а)для постоянной ЭДС e(t)=E=150 В = const; б)для синусоидальной ЭДС e(t)=150sinωt, f=50 Гц. После коммутации ветвь с резистором R2 отключается и не оказывает влияния на режим остальной схемы. а) При постоянной ЭДС источника e(t)=Е=const ток в схеме протекать не может (сопротивление конденсатора постоянному току равно ∞), следовательно iу(t)=0. б) При переменной ЭДС источника e(t)=Еmsinωt расчет установившегося режима выполняется в комплексной форме для комплексных амплитуд функций. По закону Ома: Вид установившейся составляющей соответствует виду источников энергии, которые действуют в схеме цепи.
|
||
Последнее изменение этой страницы: 2017-01-25; просмотров: 514; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.188.106.38 (0.01 с.) |