Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Биологическое окисление (БО) совокупность окислительно-восстановительных реакций, которые протекают во всех живых клетках.Содержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Субстрат БО – вещество, способное отдавать электрон. (Любые вещества, способные вступать в реакции окисления). Биохимик В.И.Палладин создал теорию дыхания, как совокупности ферментативных процессов. Он предположил, что окисление субстратов может происходить в 2 фазы: 1). Анаэробная фаза. В этой фазе особые вещества хромогены (R) отщепляют Н от субстратов и восстанавливаются (RH2). 2). Аэробная фаза. Восстановленные хромогены RH2 передают Н на О2. Субстрат БО - в-во, способное отдавать электроны (в-ва, способные вступать в реакции окисления). Пути использования кислорода в клетке В настоящее время выделено 4 основные пути использования кислорода в организме: 1. Оксидазный путь - окислительное фосфорилирование. Протекает в митохондриях, является основным источником АТФ в аэробных тканях. Потребляет 90% кислорода. 2. Монооксигеназный путь. Обеспечивает включение 1 атома кислорода в молекулу субстрата. Используется для синтеза новых веществ (стероидные гормоны), обезвреживания ксенобиотиков и токсических продуктов обмена в митохондриях и ЭПР. 3. Диоксигеназный путь. Обеспечивает включение молекулы кислорода в молекулу субстрата. Используется для деградации АК и синтеза новых веществ. 4. Пероксидазный и радикальный пути. Кислород участвует в образовании перекисей и активных радикалов, которые необходимы в пероксисомах для внутриклеточного пищеварения, разрушения макрофагами бактерий, вирусов, регуляции метаболизма и т.д. Перекиси и активные кислородные радикалы оказывают также повреждающее воздействие на структуры клеток и тканей, активируя ПОЛ. Разрушение перекисей и инактивация свободных радикалов осуществляется с помощью ферментативной и неферментативной антиокидантной системы. 17. Оксидазный путь потребления кислорода протекает в митохондриях, потребляет 90% О2 и обеспечивает процесс окислительного фосфорилирования. Окислительным фосфорилированием называют синтез АТФ из АДФ и Н3РО4 за счет энергии движении электронов по дыхательной цепи. Окислительное фосфорилирование является основным источником АТФ в аэробных клетках. МЕХАНИЗМ ОКИСЛИТЕЛЬНОГО ФОСФОРИЛИРОВАНИЯ Окислительное фосфорилирование состоит из процессов окисления и фосфорилирования, которые между собой сопряжены.
Процесс окисления происходит при движении электронов по дыхательной цепи от субстратов тканевого дыхания на кислород. Дыхательная цепь окислительного фосфорилирования состоит из 4 белковых комплексов, встроенных во внутреннюю мембрану митохондрий и небольших подвижных молекул убихинона и цитохрома С, которые циркулируют в липидном слое мембраны между белковыми комплексами. Комплекс I – НАДН2 дегидрогеназный комплекс Комплекс II – СДГ. Комплекс III – Комплекс b Комплекс IV – Цитохромоксидазный комплекс Коэнзим Q (убихинон Компоненты дыхательной цепи располагаются в мембране в порядке повышения их редокс-потенциала. При переходе е- от комплекса с низким редокс-потенциалом к комплексу с более высоким редокс-потенциалом происходит выделение свободной энергии. При окислении 1 НАДН2 выделяется 220 кДж/моль свободной энергии. I, III и IV комплексы дыхательной цепи используют 65-70% этой свободной энергии для переноса Н+ из матрикса митохондрий в межмембранное пространство, 30-35% свободной энергии рассеивается в виде тепла. 18. Этапы унифицирования энергии пищевых веществ и образования субстратов тканевого дыхания Образование субстратов тканевого дыхания осуществляется в несколько этапов: · При переваривании в ЖКТ происходит гидролиз полимеров (белков, полисахаридов) и ТГ до мономеров, которые потом всасывающихся в кровь и включающихся в промежуточный обмен. · В ходе катаболизма моносахара, жирные кислоты и аминокислоты превращаются в универсальное вещество - Ацетил-КоА (исключение некоторые АК). · Ацетил-КоА поступает в ЦТК, где из него в последовательных реакциях образуются субстраты тканевого дыхания: изоцитрат, α-КГ, сукцинат и малат. · Окисление тканевого дыхания сопровождается восстановлением коферментов НАДН2 и ФАДН2, которые затем отдают протоны в редокс-цепь окислительного фосфорилирования. 19. Митохондрии - органеллы клеток. Они имеют 2 мембраны наружную гладкую и внутреннюю с многочисленными складками – кристами, внутреннее пространство митохондрий заполнено матриксом. Метаболические и гомеостатические функции митохондрий В митохондриях происходит: синтез АТФ и теплопродукция в реакция окислительного фосфорилирования; β-окисления жирных кислот; реакции ЦТК, через ЦТК протекают некоторые реакции глюконеогенеза, переаминирования, дезаминирования, липогенеза и синтеза гема, осуществляется интеграция белкового, липидного и углеводного обмена.
Митохондрии имеют наружную мембрану, проницаемую для большинства метаболитов, и избирательно проницаемую внутреннюю мембрану с множеством складок (крист), выступающих в сторону матрикса (внутреннего пространства митохондрий). Наружная мембрана может быть удалена путем обработки дигитонином; она характеризуется наличием моноаминоксидазы и некоторых других ферментов (например, ацил-КоА-синтетазы, глицерофосфат- ацилтрансферазы, моноацилглицерофосфат-ацилтрансферазы, фосфолипазы А2). В межмембранном пространстве находятся аденилаткиназа и креатинкиназа. Во внутренней мембране локализован фосфолипид кардиолипин. В матриксе находятся растворимые ферменты цикла лимонной кислоты и ферменты (-окисления жирных кислот, в связи с этим возникает необходимость в механизмах транспорта метаболитов и нуклеотидов через внутреннюю мембрану. Сукцинатдегидрогеназа локализована на внутренней поверхности внутренней митохондриальной мембраны, где она передает восстановительные эквиваленты дыхательной цепи на уровне убихинона (минуя первую окислительно- восстановительную петлю). 3-гидроксибутиратдегид рогеназа локализована на матриксной стороне внутренней митохондриальной мембраны. Глицерол-3-фосфат- дегидрогеназа находится на наружной поверхности внутренней мембраны, где она участвует в функционировании глицерофосфатного челночного механизма. 20. Цикл Кребса ЦТК является процессом окисления АцетилКоА - универсального продукта катаболизма углеводов, жиров и белков. ЦТК протекает в митохондриях с участием 8 ферментов, которые локализованы в матриксе в свободном состоянии, или на внутренней поверхности внутренней мембраны. В ЦТК участвуют 5 витаминов В1, В2, РР, пантотеновая кислота и липоевая кислота в виде коферментов тиаминпирофосфата, ФАД, НАД+, КоА и липоата. Основной функции ЦТК является образование водородных эквивалентов, которые в цепи окислительного фосфорилирования обеспечивают синтез макроэргических соединений. Кроме того, ЦТК выполняет ведущую роль в процессах глюконеогенеза, переаминирования, дезаминирования АК, липогенеза и синтеза гема. Интегрирует все виды обмена веществ. Регуляция ЦТК. Осуществляется с участием 4 регуляторных ферментов: цитратсинтазы, изоцитрат ДГ, α-КГ ДГ и СДГ. ЦТК ингибируется в основном НАДН2 и АТФ, которые являются продуктами ЦТК и цепи окислительного фосфорилирования. Активируют ЦТК в основном НАД+ и АДФ. Реакции ЦТК 1). Цитратсинтаза локализуется в матриксе митохондрий, ее активируют ЩУК, НАД+; ингибируют АТФ, НАДН2, Сукцинил-КоА, цитрат. 2). Аконитаза локализуется в матриксе митохондрий. 3). Окислительно-восстановительная реакция, самая медленная в ЦТК. Изоцитратдегидрогеназа локализуется в матриксе митохондрий, ее активируют АМФ, Са2+, АДФ, НАД+; ингибируют АТФ, НАДН2. 4). Окислительно-восстановительная реакция. α-кетоглутаратдегидрогеназный комплекс состоит из 3 ферментов и содержит 5 коферментов: тиаминдифосфат, кофермент А, липоевая кислота, НАД+, ФАД. α-КГ ДГ активируется Са2+, ингибируется сукцинил-КоА, АТФ, НАДН2.
5). Реакция субстратного фосфорилирования 6). Окислительно-восстановительная реакция. Сукцинатдегидрогеназа, флавопротеин содержащий Fe2S2, связана с внутренней мембраной митохондрии. СДГ ингибирует ЩУК и Сукцинил-КоА, 7). Фумараза локализуется в матриксе митохондрий. 8). Окислительно-восстановительная реакция. Малат ДГ локализуется в матриксе митохондрий. Образовавшиеся молекулы ЩУК реагируют с новой молекулой Ацетил-КоА и цикл повторяется вновь. Энергетический баланс одного оборота ЦТК В 4 окислительно-восстановительных реакциях ЦТК образуются 3 НАДН2 и 1 ФАДН2, которые направляются далее в дыхательную цепь окислительного фосфорилирования. В процессе окислительного фосфорилирования ДЦ из 1 НАДН2 образуется 3 АТФ, из 1 ФАДН2 - 2 АТФ. Из 1 ГТФ, образующейся в ЦТК за счет субстратного фосфорилирования, синтезируется 1 АТФ. Таким образом, за 1 цикл ЦТК из 3 НАДН2, 1 ФАДН2 и 1 ГТФ получается 12 АТФ. Коферменты и субстраты цикла Кребса – лекарственные препараты метаболической терапии. Препарат «Коэнзим композитум». Показания: Коррекция энергетического метаболизма при: длительной поддерживающей терапии больных: ─ тяжелыми острыми воспалительными заболеваниями; ─ хроническими воспалительными заболеваниями; Фармакологические свойства: - энерготропное (регуляционное действие на работу внутриклеточных ферментных систем на уровне цикла Кребса и электронно-транспортной цепи, что сопровождается синтезом основного количества АТФ); - антигипоксическое; - антиоксидантное; - оптимизация витаминного и минерального обмена. Компоненты: - витамины: С, В1, В2, В6, РР - промежуточные катализаторы цикла Кребса: аконитовая, лимонная, яблочная, янтарная, фумаровая кислоты -субстраты -коферменты, растительные и минеральные компоненты
|
|||||||
Последнее изменение этой страницы: 2017-01-24; просмотров: 451; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.145.112.91 (0.01 с.) |