Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Электрическое сопротивление и проводимостьСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Физическая природа электрического сопротивления. При движении свободных электронов в проводнике они сталкиваются на своем пути с положительными ионами 2 (см. рис. 10, а), атомами и молекулами вещества, из которого выполнен проводник, и передают им часть своей энергии. При этом энергия движущихся электронов в результате столкновения их с атомами и молекулами частично выделяется и рассеивается в виде тепла, нагревающего проводник. Ввиду того что электроны, сталкиваясь с частицами проводника, преодолевают некоторое сопротивление движению, принято говорить, что проводники обладают электрическим сопротивлением. Если сопротивление проводника мало, он сравнительно слабо нагревается током; если сопротивление велико, проводник может раскалиться. Провода, подводящие электрический ток к электрической плитке, почти не нагреваются, так как их сопротивление мало, а спираль плитки, обладающая большим сопротивлением, раскаляется докрасна. Еще сильнее нагревается нить электрической лампы. За единицу сопротивления принят ом. Сопротивлением 1 Ом обладает проводник, по которому проходит ток 1 А при разности потенциалов на его концах (напряжении), равной 1 В. Эталоном сопротивления 1 Ом служит столбик ртути длиной 106,3 см и площадью поперечного сечения 1 мм2 при температуре 0 °С. На практике часто сопротивления измеряют тысячами ом — килоомами (кОм) или миллионами ом — мегаомами (МОм). Сопротивление обозначают буквой Я ( г). Проводимость. Всякий проводник можно характеризовать не только его сопротивлением, но и так называемой проводимостью — способностью проводить электрический ток. Проводимость есть величина, обратная сопротивлению. Единица проводимости называется сименсом (См). 1 См равен 1/1 Ом. Проводимость обозначают буквой О (§). Следовательно, Удельное электрическое сопротивление и проводимость. Атомы разных веществ оказывают прохождению электрического тока неодинаковое сопротивление. О способности отдельных веществ проводить электрический ток можно судить по их удельному электрическому сопротивлению р. За величину, характеризующую удельное сопротивление, обычно принимают сопротивление куба с ребром 1 м. Удельное электрическое сопротивление измеряют в Ом-м. Для суждения об электропроводности материалов пользуются также понятием удельная электрическая проводимость а=1/р. Удельная электрическая проводимость измеряется в сименсах на метр (См/м) (проводимость куба с ребром 1 м). Часто удельное электрическое сопротивление выражают в ом-сантиметрах (Ом • см), а удельную электрическую проводимость — в сименсах на сантиметр (См/см). При этом 1 Ом-см = 10~~2 Ом-м, а 1 См/см = = 102 См/м.
Проводниковые материалы применяют, главным образом, в виде проволок, шин или лент, площадь поперечного сечения которых принято выражать в квадратных миллиметрах, а длину — в метрах. Поэтому для удельного электрического сопротивления подобных материалов и удельной электрической проводимости введены и другие единицы измерения: р измеряют в Ом-мм2/м (сопротивление проводника длиной 1 м и площадью поперечного сечения 1 мм2), а а — в См-м/мм2 (проводимость проводника длиной 1 м и площадью поперечного сечения 1 мм2). Из металлов наиболее высокой электропроводностью обладают серебро и медь, так как структура их атомов позволяет легко передвигаться свободным электронам, затем следует золото, хром, алюминий, марганец, вольфрам и т. д. Хуже проводят ток железо и сталь. Чистые металлы всегда проводят электрический ток лучше, чем их сплавы. Поэтому в электротехнике используют преимущественно очень чистую медь, содержащую только 0,05 % примесей. И наоборот, в тех случаях, когда необходим материал с высоким сопротивлением (для различных нагревательных приборов, реостатов и пр.). применяют специальные сплавы: константан, манганин, нихром, фехраль. В табл. 1 приведены значения удельного сопротивления некоторых проводниковых материалов, применяемых в электрическом оборудовании локомотивов. 16 Таблица 1
Следует отметить, что в технике, кроме металлических проводников, используют и неметаллические. К таким проводникам относится, например, уголь, из которого изготовляют щетки электрических машин, электроды для прожекторов и пр. Проводниками электрического тока являются толща земли, живые ткани растений, животных и человека. Проводят электрический ток сырое дерево и многие другие изоляционные материалы во влажном состоянии.
Электрическое сопротивление проводника зависит не только от материала проводника, но и его длины / и площади поперечного сечения 5. (Электрическое сопротивление подобно сопротивлению, оказываемому движению воды в трубе, которое зависит от площади сечения трубы и ее длины.) Сопротивление прямолинейного проводника Если удельное сопротивление р выражено в Ом-мм2/м, то для того, чтобы получить сопротивление проводника в омах, длину его надо подставлять в формулу (5) в метрах, а площадь поперечного сечения — в квадратных миллиметрах. Зависимость сопротивления от температуры. Электропроводность всех материалов зависит от их температуры. В металлических проводниках при нагревании размах и скорость колебаний атомов в кристаллической решетке металла увеличиваются, вследствие чего возрастает и сопротивление, которое они оказывают потоку электронов. При охлаждении происходит обратное явление: беспорядочное колебательное движение атомов в узлах кристаллической решетки уменьшается, сопротивление их потоку электронов понижается и электропроводность проводника возрастает. В природе, однако, имеются некоторые сплавы: фехраль, константан, манганин и др., у которых в определенном интервале температур электрическое сопротивление меняется сравнительно мало. Подобные сплавы применяют в технике для изготовления различных резисторов, используемых в электроизмерительных приборах и некоторых аппаратах для компенсации влияния температуры на их работу. О степени изменения сопротивления проводников при изменении температуры судят по так называемому температурному коэффициенту сопротивления а. Этот коэффициент представляет собой относительное приращение сопротивления проводника при увеличении его температуры на 1 °С. В табл. 1 приведены значения температурного коэффициента сопротивления для наиболее применяемых проводниковых материалов. Сопротивление металлического проводника /?/ при любой температуре / Свойство металлических проводников увеличивать свое сопротивление при нагревании часто используют в современной технике для измерения температуры. Например, при испытаниях тяговых двигателей после ремонта температуру нагрева их обмоток определяют измерением их сопротивления в холодном состоянии и после работы под нагрузкой в течение установленного периода (обычно в течение 1 ч). Исследуя свойства металлов при глубоком (очень сильном) охлаждении, ученые обнаружили замечательное явление: вблизи абсолютного нуля (— 273,16 °С) некоторые металлы почти полностью утрачивают электрическое сопротивление. Они становятся идеальными проводниками, способными длительное время пропускать ток по замкнутой цепи без всякого воздействия источника электрической энергии. Это явление названо сверхпроводимостью. В настоящее время созданы опытные образцы линий электропередачи и электрических машин, в которых используется явление 18
сверхпроводимости. Такие машины имеют значительно меньшие массу и габаритные размеры по сравнению с машинами общего назначения и работают с очень высоким коэффициентом полезного действия. Линии электропередачи в этом случае можно выполнить из проводов с очень малой площадью поперечного сечения. В перспективе в электротехнике будет все больше и больше использоваться это явление.
|
||||||||||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2017-01-23; просмотров: 1072; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.226.187.60 (0.012 с.) |