Что изучает наука – электротехника? Электрическая цепь. Электрический ток



Мы поможем в написании ваших работ!


Мы поможем в написании ваших работ!



Мы поможем в написании ваших работ!


ЗНАЕТЕ ЛИ ВЫ?

Что изучает наука – электротехника? Электрическая цепь. Электрический ток



Что изучает наука – электротехника? Электрическая цепь. Электрический ток

Электротехника — область технических наук, изучающая получение, распределение, преобразование и использование электрической энергии

Электрическая цепь — совокупность устройств, элементов, предназначенных для протекания электрического тока, электромагнитные процессы в которых могут быть описаны с помощью понятий сила тока и напряжение

Цепи бывают:

Неразветвленные и разветвленные электрические цепи

Линейные и нелинейные электрические цепи

Неразветвленные- это когда во всех элементах ее течет один и тот же ток

Разветвленные- в каждой ветви течет свой ток. Ветвь можно определить как участок цепи, образованный последовательно соединенными элементами (через которые течет одинаковый ток) и заключенный между двумя узлами. В свою очередь узел есть точка цепи, в которой сходятся не менее трех ветвей.

Линейной электрической цепью называют такую цепь, все компоненты которой линейны. К линейным относятся те компоненты, которые описываются линейным дифференциальным уравнением

Нелинейные- если цепь содержит отличные от перечисленных компоненты

Законы действующие в электрических цепях:

-Закон Ома

-Теорема Тевенина

-Правило токов Кирхгофа

-Правило напряжений Кирхгофа

Электрический ток— упорядоченное некомпенсированное движение свободных электрически заряженных частиц под воздействием электрического поля. Такими частицами могут являться: в проводниках — электроны, в электролитах — ионы (катионы и анионы), в газах — ионы и электроны, в вакууме при определенных условиях — электроны, в полупроводниках — электроны и дырки (электронно-дырочная проводимость)

Различают:Постоянный ток — ток, направление и величина которого слабо меняются во времени

Переменный ток — это ток, величина и (или) направление которого меняются во времени. Среди переменных токов основным является ток, величина которого изменяется по синусоидальному закону

Электрические цепи и ее элементы.

Электрическая цепь представляет собой совокупность устройств и объектов, образующих путь для электрического тока, электромагнитные процессы в которых могут быть описаны с помощью понятий об электродвижущей силе, токе и напряжении. В электрической цепи постоянного тока могут действовать как постоянные токи, так и токи, направление которых остается постоянным, а значение изменяется произвольно во времени или по какому-либо закону.

Электрическая цепь состоит из отдельных устройств или элементов, которые по их назначению можно разделить на 3 группы:

Первую группу составляют элементы, предназначенные для выработки электроэнергии (источники питания)

Вторая группа — элементы, преобразующие электроэнергию в другие виды энергии (механическую, тепловую, световую, химическую и т. д.). Эти элементы называются приемниками электрической энергии (электроприемниками)

В третью группу входят элементы, предназначенные для передачи электроэнергии от источника питания к электроприемнику (провода, устройства, обеспечивающие уровень и качество напряжения, и др.).

Расчет цепи постоянного тока с единственным источником

Метод контурных токов

Метод контурных токов — метод сокращения размерности системы уравнений, описывающей электрическую цепь

Идея метода контурных токов: уравнения составляются только по второму закону Кирхгофа, но не для действительных, а для воображаемых токов, циркулирующих по замкнутым контурам, т.е. в случае выбора главных контуров равных токам ветвей связи. Число уравнений равно числу независимых контуров, т.е. числу ветвей связи графа . Первый закон Кирхгофа выполняется автоматически. Контуры можно выбирать произвольно, лишь бы их число было равно и чтобы каждый новый контур содержал хотя бы одну ветвь, не входящую в предыдущие. Такие контуры называются независимыми.

Направления истинных и контурных токов выбираются произвольно. Выбор положительных направлений перед началом расчета может не определять действительные направления токов в цепи. Если в результате расчета какой-либо из токов, как и при использовании уравнений по законам Кирхгофа, получится со знаком “-”, это означает, что его истинное направление противоположно.

При составлении уравнений необходимо помнить следующее:

- сумма сопротивлений, входящих в i-й контур;

- сумма сопротивлений, общих для i-го и k-гоконтуров, причем ;

-члены на главной диагонали всегда пишутся со знаком “+”;

-знак “+” перед остальными членами ставится в случае, если через общее сопротивление i-й и k- й контурные токи проходят в одном направлении, в противном случае ставится знак “-”;

-если i-й и k- й контуры не имеют общих сопротивлений, то ;

-в правой части уравнений записывается алгебраическая сумма ЭДС, входящих в контур: со знаком “+”, если направление ЭДС совпадает с выбранным направлением контурного тока, и “-”, если не совпадает

Метод узловых потенциалов

Данный метод вытекает из первого закона Кирхгофа. В качестве неизвестных принимаются потенциалы узлов, по найденным значениям которых с помощью закона Ома для участка цепи с источником ЭДС затем находят токи в ветвях. Поскольку потенциал — величина относительная, потенциал одного из узлов (любого) принимается равным нулю. Таким образом, число неизвестных потенциалов, а следовательно, и число уравнений равно , т.е. числу ветвей дерева .

Как и по методу контурных токов, система уравнений по методу узловых потенциалов может быть составлена формальным путем. При этом необходимо руководствоваться следующими правилами:

1. В левой части i-гоуравнения записывается со знаком “+”потенциал i-го узла, для которого составляется данное i-е уравнение, умноженный на сумму проводимостей ветвей, присоединенных к данному i-му узлу, и со знаком “-”потенциал соседних узлов, каждый из которых умножен на сумму проводимостей ветвей, присоединенных к i-му иk-му узлам.

Из сказанного следует, что все члены , стоящие на главной диагонали в левой части системы уравнений, записываются со знаком “+”, а все остальные — со знаком “-”, причем . Последнее равенство по аналогии с методом контурных токов обеспечивает симметрию коэффициентов уравнений относительно главной диагонали.

2.В правой части i-гоуравнения записывается так называемый узловой ток , равный сумме произведений ЭДС ветвей, подходящих к i-му узлу, и проводимостей этих ветвей. При этом член суммы записывается со знаком “+”, если соответствующая ЭДС направлена к i-му узлу, в противном случае ставится знак “-”. Если в подходящих к i-му узлу ветвях содержатся источники тока, то знаки токов источников токов, входящих в узловой ток простыми слагаемыми, определяются аналогично.

Режимы работы электрической цепи постоянного тока

Номинальный режим- когда к источнику подключается потребитель на который он рассчитан.

Режим холостого хода – работа источника без потребителя.

Режим короткого замыкания – работа без потребителя, контакты источника замыкаются накоротко.

Согласованный режим – сопротивление внешней цепи равно внутреннему сопротивлению и источнику. В этом режиме от источника к потребителю передается максимальная мощность. КПД=50%.Применяется в радиотехнике.

 

Закон Ома в комплексной форме.

U = UR +UL + UC = UR + jUL – jUC = IR + jIXL – jIXC = I (R+ j) (XL - XC) = IZ

Законы Кирхгофа в комплексной форме.

1 закон Кирхгофа:

I=IR+IL+IC=IR – jIL + jIC=U/R – jU/XL+ U/jXC

2 закон Кирхгофа: ΣE = ΣIZ + ΣU

Электрическая цепь с активным сопротивлением.

Активный процесс – это процесс преобразования электрической энергии в другой вид, например в тепло.

Количественная оценка это процесса характеризуется сопротивлением R.

Постоянный ток – это ток с нулевой частотой.

Активное сопротивление не зависит от частоты тока.

i (t) = Im Sin ɷt , [A]

Ue = i * R

UR = Im R Sin ɷ t = UmR Sin ɷ t

Комплексной действующее значение.

I = Im/√2 ; UR = Umz /√2

I = I ei ; UR = UR ein = U r1

В комплексной форме

R всегда положительное действующее число.

Напряжение на активной сопротивлении R совпадает с током по фазе.

Резонанс напряжений.

φ = 0

UL = UC

X = XL – XC= 0

Up = UL – UC = 0

U = UR

Z0 = R → min

I0 = U/R → max

При резонансе, т. к. режим активный, напряжение и ток совпадают по фазе.

26. мощность в цепи синусоидального тока.Энергетические процессы в цепях переменного тока являются функциями времени. Рассмотрим мощности отдельных участков цепи с последовательным соединением R, L, C (рис. 2.15), для чего допустим, что к ней приложено напряжение и протекает ток .

Мощность в активном сопротивлении:

.

Учитывая RI = UR, а также равенство UR = Ucosφ, полученное из треугольника напряжений, будем иметь Рис. 2.15. Схема последовательной цепи

мгновенная мощность в активном сопротивлении всегда положительна (т.е. всегда потребляется). Мгновенная мощность колеблется с двойной частотой около своего среднего значения, равного U I cos φ.

Рис. 2.16. Мгновенная мощность на активном сопротивлении

Под активной мощностью понимают среднее значение полной мгновенной мощности за период P=UIcos φ{Вт}. Активная мощность никогда не бывает отрицательной, так как ею характеризуется потребление энергии цепью.

Реактивная мощность (Q) характеризует ту часть энергии, которой цепь обменивается с источником без потребления. Ее величина определяется амплитудным значением мгновенной реактивной мощности Q=UICos(2wt-ф){ВАр}. S=U*I{ВА}. Она положительна при отстающем токе (когда φ > 0) и отрицательна при опережающем (когда φ < 0).

Треугольник мощностей:

27. Коэффицие́нт мо́щности..- Это безразмерная физическая величина, характеризующая потребителя переменного электрического тока с точки зрения наличия в нагрузке реактивной составляющей. Коэффициент мощности показывает, насколько сдвигается по фазе переменный ток, протекающий через нагрузку, относительно приложенного к ней напряжения. Соsф=P/S=P/UI.

28.Определение ,способ получения трехфазной системы. Трёхфазная цепь, трёхфазная система, совокупность трёх однофазных электрических цепей переменного тока (называемых фазами), в которых действуют три переменных напряжения одинаковой частоты, сдвинутых по фазе друг относительно друга; частный случай многофазной системы.

Преимущества трех фазной цепи:1) По сравнению с однофазными цепями переменного тока Т. ц. более экономичны, дают существенно меньшие пульсации тока после выпрямления. 2)Применение Т. ц. позволяет простыми средствами получать вращающееся магнитное поле в электродвигателях переменного тока.

Основные понятия и законы магнитных цепей

Магнитная цепь - , совокупность источников магнитного потока (постоянных магнитов, электромагнитов) и ферромагнитных или др. тел и сред, через которые магнитный поток замыкается. ;

При решении электротехнических задач все вещества в магнитном отношении делятся на две группы: ферромагнитные и неферромагнитные

Основные законы магнитной цепи

Закон (принцип) непрерывности магнитного потока- Поток вектора магнитной индукции через замкнутую поверхность равен нулю

Закон полного тока- Циркуляция вектора напряженности вдоль произвольного контура равна алгебраической сумме токов, охватываемых этим контуром

Первый закон Кирхгофа- Алгебраическая сумма магнитных потоков в узле магнитопровода равна нулю

Второй закон Кирхгофа- Алгебраическая сумма падений магнитного напряжения вдоль замкнутого контура равна алгебраической сумме МДС, действующих в контуре

Закон Ома- Падение магнитного напряжения на участке магнитопровода длиной равно произведению магнитного потока и магнитного сопротивления участка

Что изучает наука – электротехника? Электрическая цепь. Электрический ток

Электротехника — область технических наук, изучающая получение, распределение, преобразование и использование электрической энергии

Электрическая цепь — совокупность устройств, элементов, предназначенных для протекания электрического тока, электромагнитные процессы в которых могут быть описаны с помощью понятий сила тока и напряжение

Цепи бывают:

Неразветвленные и разветвленные электрические цепи

Линейные и нелинейные электрические цепи

Неразветвленные- это когда во всех элементах ее течет один и тот же ток

Разветвленные- в каждой ветви течет свой ток. Ветвь можно определить как участок цепи, образованный последовательно соединенными элементами (через которые течет одинаковый ток) и заключенный между двумя узлами. В свою очередь узел есть точка цепи, в которой сходятся не менее трех ветвей.

Линейной электрической цепью называют такую цепь, все компоненты которой линейны. К линейным относятся те компоненты, которые описываются линейным дифференциальным уравнением

Нелинейные- если цепь содержит отличные от перечисленных компоненты

Законы действующие в электрических цепях:

-Закон Ома

-Теорема Тевенина

-Правило токов Кирхгофа

-Правило напряжений Кирхгофа

Электрический ток— упорядоченное некомпенсированное движение свободных электрически заряженных частиц под воздействием электрического поля. Такими частицами могут являться: в проводниках — электроны, в электролитах — ионы (катионы и анионы), в газах — ионы и электроны, в вакууме при определенных условиях — электроны, в полупроводниках — электроны и дырки (электронно-дырочная проводимость)

Различают:Постоянный ток — ток, направление и величина которого слабо меняются во времени

Переменный ток — это ток, величина и (или) направление которого меняются во времени. Среди переменных токов основным является ток, величина которого изменяется по синусоидальному закону



Последнее изменение этой страницы: 2016-04-07; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.236.175.108 (0.013 с.)