Классический метод расчёта переходных процессов 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Классический метод расчёта переходных процессов



Определение переходного процесса

Переходным процессом называется изменение во времени токов и напряжений в электрической цепи при переходе от одного установившегося режима к другому.

Установившийся (стационарный) режим создаётся в цепи источником постоянной ЭДС, источником периодически изменяющейся ЭДС произвольной формы (в том числе синусоидальной). К этому режиму относится также случай отсутствия токов в ветвях цепи.

В отличие от установившегося, переходной режим – неустановившийся, нестационарный процесс, характеризующийся быстрыми изменениями токов и напряжений.

Переходной процесс начинается с мгновенного изменения состояния цепи, называемого к о м м у т а ц и е й: замыкания, размыкания, переключения выключателей, контактов реле и других коммутационных устройств, объединённых общим названием – «ключи» (рис. 1.1). Под это понятие попадают также электронные схемы, работающие в ключевом режиме.

В дальнейшем будем считать, что коммутация происходит при . Момент времени, предшествующий коммутации, будем обозначать , а момент времени сразу после коммутации – . В момент коммутации в электрической цепи скачком изменяется приложенное к ней напряжение или её параметры, причём переходный процесс возможен только в такой цепи, в состав которой входят реактивные элементы – индуктивность и (или) ёмкость, способные запасать энергию магнитного и электрического полей. Переходной процесс отсутствует в цепях, содержащих лишь активные сопротивления. При коммутации в таких цепях токи и напряжения устанавливаются мгновенно.

В радиотехнике и связи переходные процессы имеют первостепенное значение, так как длительность сигналов соизмерима со временем переходных процессов. Они влияют на форму сигналов. В некоторых схемах они нежелательны, поскольку являются причиной переходных искажений; в других – используются для получения сигналов заданной формы.

В автоматическом регулировании параметры переходного процесса определяют показатели качества системы (перерегулирование, время регулирования, декремент затухания и др.).

Во время переходных процессов на отдельных участках цепи могут возникать напряжения и токи, во много раз превышающие установившиеся значения. Это обстоятельство необходимо учитывать при разработке электрических и электронных схем.

Законы коммутации

Ток в индуктивности и напряжение на ёмкости в момент коммутации не могут изменяться скачком, а являются непрерывными функциями времени, т.е.

Равенства (1.1) и (1.2) выражают аналитически соответственно первый и второй законы коммутации.

В схеме на рис. 1.2 а происходит коммутация в цепи постоянного тока, содержащей индуктивность. Ток в цепи до коммутации ; ток в установившемся режиме после окончания переходного процесса .

 

На основании первого закона коммутации,

На рис. 1.2 б показан постепенный, непрерывный процесс установления тока в цепи после замыкания ключа S.

На рис. 1.3 поясняется второй закон коммутации.

В схеме на рис. 1.3 а за время переходного процесса напряжение на ёмкости непрерывно изменяется от значения до (рис. 1.3 б).

В момент переключения в цепи при t=0 должен выполняться второй закон коммутации

.

С физической точки зрения законы коммутации являются частными проявлениями общего закона природы – закона непрерывности энергии. Энергия магнитного поля, запасённая в индуктивности , и энергия электрического поля, запасённая в ёмкости , не могут изменяться скачком. Действительно, скачкообразное изменение или влечёт за собой скачкообразное изменение или . В этом случае мгновенные мощности в индуктивности в ёмкости равны бесконечности, что лишено физического смысла, так как реальные источники энергии не могут развивать бесконечно большую мощность. С другой стороны, если допустить, что в момент коммутации ток (или напряжение ) изменяется скачком, то напряжение на индуктивности (ток в ёмкости ) примет бесконечно большое значение, и в цепи не будет выполняться второй (или соответственно первый) закон Кирхгофа.

Заметим, что ток в ёмкости и напряжение на индуктивности не являются носителями энергии, поэтому законам коммутации не подчиняются и могут изменяться скачком.



Поделиться:


Последнее изменение этой страницы: 2016-12-30; просмотров: 153; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.137.174.216 (0.006 с.)