Введение. Цель и задачи курса 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Введение. Цель и задачи курса



КРАТКИЙ КУРС ЛЕКЦИЙ

по дисциплине «Инженерная графика» 1 семестр

для студентов заочной формы обучения

полная и сокращенная программы

Волгодонск 2013


СОДЕРЖАНИЕ

 

1. МЕТОДЫ ПРОЕЦИРОВАНИЯ. КОМПЛЕКСНЫЙ ЧЕРТЕЖ... 3

2. ПРОЕКЦИИ ПРЯМОЙ.. 7

3. ПРОЕКЦИИ ПЛОСКОСТИ.. 16

4. ПРЕОБРАЗОВАНИЕ ЧЕРТЕЖА.. 29

5. ПОВЕРХНОСТИ.. 33

6. РАЗВЕРТКИ ПОВЕРХНОСТЕЙ.. 50


1. Методы ПРОЕЦИРОВАНИЯ. КОМПЛЕКСНЫЙ ЧЕРТЕЖ

Введение. Цель и задачи курса

В математическом энциклопедическом словаре дается следующее определение: «Начертательная геометрия – раздел геометрии, в котором пространственные фигуры, а также методы решения и исследования пространственных задач изучаются с помощью их изображений на плоскости».

Методы начертательной геометрии являются теоретической базой для решения задач технического черчения. В технике чертежи являются основным средством выражения человеческих идей. Они должны не только определять форму и размеры предметов, но и быть достаточно простыми и точными в графическом исполнении, помогать всесторонне исследовать предметы и их отдельные детали. Для того чтобы правильно выразить свои мысли с помощью рисунка, эскиза, чертежа требуется знание теоретических основ построения изображений геометрических объектов, их многообразие и отношения между ними, что и составляет предмет начертательной геометрии.

Методы прямоугольного проецирования на две и три

Взаимно перпендикулярные плоскости проекций.

Проекции точки, комплексный чертеж.

 

Метод Монжа, комплексный чертеж.

 

Если информацию о расстоянии точки относительно плоскости проекции дать не с помощью числовой отметки, а с помощью второй проекции точки, построенной на второй плоскости проекций, то чертеж называют двухкартинным или комплексным. Основные принципы построения таких чертежей изложены Гаспаром Монжем - крупным французским геометром конца 18, начала 19 веков, 1789-1818 гг. одним из основателей знаменитой политехнической школы в Париже и участником работ по введению метрической системы мер и весов.

Постепенно накопившиеся отдельные правила и приемы таких изображений были приведены в систему и развиты в труде Г. Монжа "Geometrie descriptive".

Изложенный Монжем метод ортогонального проецирования на две взаимно перпендикулярные плоскости проекций был и остается основным методом составления технических чертежей.

В соответствии с методом предложенным Г. Монжем рассмотрим в пространстве две взаимно перпендикулярные плоскости проекций (рис.6). Одну из плоскостей проекций П 1 располагают горизонтально, а вторую П 2 - вертикально. П 1 - горизонтальная плоскость проекций, П 2 - фронтальная. Плоскости бесконечны и непрозрачны.

Плоскости проекций делят пространство на четыре двугранных угла – четверти. Рассматривая ортогональные проекции, предполагают, что наблюдатель находится в первой четверти на бесконечно большом расстоянии от плоскостей проекций.

Рисунок 1. Пространственная модель двух плоскостей проекций   Линия пересечения плоскостей проекций называется осью координат и обозначается x 21. Так как эти плоскости непрозрачны, то видимыми для наблюдателя будут только те геометрические объекты, которые располагаются в пределах той же первой четверти. Чтобы получить плоский чертеж, состоящий из указанных проекций, плоскость П 1 совмещают вращением вокруг оси x 12 с плоскостью П 2(рис.1).Проекционный чертеж, на котором плоскости проекций со всем тем, что на них изображено, совмещенные определенным образом одна с другой, называется эпюром Монжа (франц. Epure – чертеж.) или комплексным чертежом.  

 

ПРОЕКЦИИ ПРЯМОЙ

 

Следы прямой линии

 

Следом прямой линии называется точка (рис. 11), в которой прямая пересекается с плоскостью проекций (так как след - точка, принадлежащая одной из плоскостей проекций, то одна из её координат должна быть равна нулю).

Горизонтальный след - М (zM)= – точка пересечения прямой с горизонтальной плоскостью проекций.

Фронтальный след - N (yN)= – точка пересечения прямой с фронтальной плоскостью проекций.

Профильный след - Т (xТ) = – точка пересечения прямой с профильной плоскостью проекций.

 

   
 
 
а) модель б) эпюр
Рисунок 11. Следы прямой линии в системе трех плоскостей проекций

Следы прямой являются точками частного положения. Одноименные проекции следа прямой совпадают с самим следом, а другие проекции лежат на осях. Например, фронтальный след прямой N2ºN, а N1 лежит на оси x, N3 - на оси z. Отмеченные особенности в расположении следов проекций позволяет сформулировать следующие правила:

1. Для построения горизонтального следа М прямой необходимо продолжить ее фронтальную проекцию до пересечения с осью x и в этой точке восстановить перпендикуляр к оси до пересечения с горизонтальной проекцией прямой. 2. Для построения фронтального следа N прямой нужно из точки пересечения горизонтальной проекции её с осью 0x восстановить перпендикуляр до пересечения с фронтальной проекцией прямой. С помощью этих правил найдены на эпюре следы прямой а(рис.12). Следы прямой, являются точками, в которых прямая переходит из одного октанта в другой, позволяют отмечать её видимость. Видимой частью прямой будет та, которая расположена в пределах первого октанта.
Рисунок 12. Нахождение горизонтального и фронтального следов прямой линии

 

Параллельные прямые линии.

Параллельными называются две прямые, которые лежат в одной плоскости и не имеют общих точек. Проекции параллельных прямых на любую плоскость (не перпендикулярную данным прямым) - параллельны. Если ABCD то A1B1C1D1; A2B2C2D2; A3B3C3D3 (рис.15). В общем случае справедливо и обратное утверждение.

   
 
 
а) модель б) эпюр
Рисунок 15. Параллельные прямые

Особый случай представляют собой прямые, параллельные одной из плоскостей проекций. Например, фронтальные и горизонтальные проекции профильных прямых параллельны, но для оценки их взаимного положения необходимо сделать проекцию на профильную плоскость проекций (рис.16). В рассмотренном случае проекции отрезков на плоскость П3 пересекаются, следовательно, они не параллельны.

   
 
 
а) модель б) эпюр
Рисунок 16. Прямые параллельные профильной плоскости проекций

Пересекающиеся прямые.

Пересекающимися называются две прямые лежащие в одной плоскости и имеющие одну общую точку. Если прямые пересекаются, то точки пересечения их одноименных проекций находится на одной линии связи (рис.17).

 
 
 
а) модель б) эпюр
Рисунок 17. Пересекающиеся прямые

 

В общем случае справедливо и обратное утверждение, но есть два частных случая:

1. Если одна из прямых параллельна какой-либо из плоскостей проекций, например, профильной (рис.18), то по двум проекциям невозможно судить об их взаимном расположении. Так горизонтальная и фронтальная проекции отрезков АВ и СД пересекаются, причем точка пересечения проекций лежит на одной линии связи, однако сами отрезки не пересекаются, потому что точка пересечения профильных проекций этих отрезков не лежит на одной линии связи с точками пересечения их горизонтальной и фронтальной проекций.

   
 
 
а) модель б) эпюр
Рисунок 18. Одна из прямых параллельна профильной плоскости проекций

2. Пересекающие прямые расположены в общей для них проецирующей плоскости, например перпендикулярной фронтальной плоскости проекций (рис.19).

О взаимном расположении прямых, лежащих в этой плоскости, можно судить по одной горизонтальной проекции (А 1 В 1С 1 D 1Þ АВ∩СD).

 

   
 
 
а) модель б) эпюр
Рисунок 19. Пересекающиеся прямые расположены в фронтально проецирующей плоскости

Скрещивающиеся прямые

Скрещивающимися называются две прямые не лежащие в одной плоскости.

ПРОЕКЦИИ ПЛОСКОСТИ

3.1. Способы задания плоскости на чертеже

Рассмотрим некоторые способы графического задания плоскости. Положение плоскости в пространстве может быть определено:

1. тремя точками, не лежащими на одной прямой линии (рис. 21);

 

   
 
 
а) модель б) эпюр
Рисунок 21. Плоскость, заданная тремя точками, не лежащими на одной прямой

2. прямой линией и точкой, не принадлежащей этой прямой (рис. 22);

3. двумя пересекающимися прямыми (рис. 23);

4. двумя параллельными прямыми (рис. 24);

 

 


 

     
   
   
а) модель б) эпюр  
Рисунок 22. Плоскость, заданная прямой линией и точкой, не принадлежащей этой линии  
   
 
 
а) модель б) эпюр  
Рисунок 23. Плоскость, заданная двумя пересекающимися прямыми  
     
   
   
а) модель б) эпюр  
Рисунок 24. Плоскость, заданная двумя параллельными прямыми  
           

5. О положении плоскости относительно плоскостей проекций удобно судить по её следам (рис. 25).

Следом плоскости называется прямая линия, по которой плоскость пересекается с плоскостью проекций. В зависимости от того, какую плоскость проекций пересекает данная плоскость различают горизонтальный, фронтальный и профильный следы.

 
 
 
а) модель б) эпюр
Рисунок 25. Плоскость, заданная следами

 

Следы плоскости общего положения пересекаются попарно на осях в точках ax,ay,az. Эти точки называются точками схода следов, их можно рассматривать как вершины трехгранных углов, образованных данной плоскостью с двумя из трех плоскостей проекций.

Каждый из следов плоскости совпадает со своей одноименной проекцией, а две другие разноименные проекции лежат на осях.

 

Точка и прямая в плоскости

Точка принадлежит плоскости, если она лежит на прямой, принадлежащей этой плоскости.

Если точка принадлежит плоскости, то из трех проекций, определяющих положение точки в пространстве, произвольно задать можно только одну.

Параллельные плоскости

Плоскости параллельны, если две пересекающиеся прямые одной плоскости соответственно параллельны двум пересекающимся прямым другой плоскости.

Это определение хорошо иллюстрируется задачей: через точку В провести плоскость параллельную плоскости, заданной двумя пересекающимися прямыми (a, b) (рис. 36).

   
 
 
 
а) модель б) эпюр
Рисунок 36. Параллельные плоскости

Для решения задачи требуется через точку В провести плоскость, параллельную плоскости (a, b) и задать её двумя пересекающимися прямыми c и d.

Для того, чтобы провести на эпюре параллельные прямые необходимо воспользоваться свойством параллельного проецирования - проекции параллельных прямых - параллельны между собой.

Пересекающиеся плоскости

Линией пересечения двух плоскостей является прямая, для построения которой достаточно определить две её точки, общие обеим плоскостям, либо одну точку и направление линии пересечения плоскостей.

Рассмотрим построение линии пересечения двух плоскостей, когда одна из них проецирующая (рис. 37).

Дано: плоскость общего положения, заданная треугольником АВС, а вторая плоскость - горизонтально проецирующая a. Требуется построить линию пересечения заданных плоскостей.

Решение задачи заключается в нахождении двух точек общих для данных плоскостей, через которые можно провести прямую линию. Плоскость, заданная треугольником АВС можно представить, как прямые линии (АВ), (АС), (ВС). Точка пересечения прямой (АВ) с плоскостью a - точка D, прямой (AС) -F. Отрезок [DF] определяет линию пересечения плоскостей. Так как a - горизонтально проецирующая плоскость, то проекция D1F1 совпадает со следом плоскости aП1 таким образом остается только построить недостающие проекции DF на П2 и П3.

   
 
 
 
а) модель б) эпюр
Рисунок 37. Пересечение плоскости общего положения с горизонтально проецирующей плоскостью

 

Рассмотрим общий случай пересечения плоскостей, когда плоскости занимают общее положение в пространстве.

Дано: Две плоскости общего положения a()n,m и b (ABC) (рис. 38). Требуется построить линию пересечения плоскостей a и b.

 
 
 
а) модель б) эпюр
Рисунок 38. Пересечение плоскостей общего положения

 

 

Рассмотрим последовательность построения линии пересечения плоскостей a(m//n) и b(АВС). По аналогии с предыдущей задачей для нахождения линии пересечения данных плоскостей проведем вспомогательные секущие плоскости g и d. Найдем линии пересечения этих плоскостей с заданными плоскостями. Плоскость g пересекает плоскость a по прямой (12), а плоскость b - по прямой (34). Точкапересечения этих прямых- К,которая одновременно принадлежит трем плоскостям a, b и g,т.е. искомой линии пересечения плоскостей a и b. Плоскость d пересекает плоскости a и b по прямым (56) и (7C), точка их пересечения М расположена одновременно в трех плоскостях a, b, d и принадлежит прямой линии пересечения плоскостей a и b. Таким образом, прямая (КМ) является линией пересечения плоскостей a и b.

 

ПРЕОБРАЗОВАНИЕ ЧЕРТЕЖА

ПОВЕРХНОСТИ

Проецирование поверхностей

В начертательной геометрии поверхность рассматривают как множество последовательных положений движущейся линии или другой поверхности в пространстве. Линию, перемещающуюся в пространстве и образующую поверхность, называют образую­щей. Образующие могут быть прямыми и кривыми. Образующие поверхность кривые могут быть постоянными и переменными, например закономерно изменяющимися.

Одна и та же поверхность в ряде случаев может рассматривать­ся как образованная движениями различных образующих. На­пример, круговой цилиндр может быть образован: во-первых, вращением прямой относительно неподвижной оси, параллель­ной образующей; во-вторых, движением окружности, центр ко­торой перемещается по прямой, перпендикулярной плоскости окружности; в-третьих, прямолинейным движением сферы.

При изображении поверхности на чертеже показывают лишь некоторые из множества положений образующей. На рисун­ке 49 показана поверхность с образующей АВ. При своем движении образующая остается параллельной выбранному направ­лению MN одновременно пересекает некоторую кривую линию CDE. Таким образом движение обра­зующей АВ направляется в простран­стве линией CDE.

Рисунок 49 Рисунок 50

Линию или линии, пересечение с которыми является обязательным ус­ловием движения образующей при образовании поверхности, называют направляющей или направляющими. На рисунке 50 показана проекция поверх­ности, образованной движением пря­мой АВ по двум направляющим — прямой О1О2 и пространственной кривой FGQ, не пересекающей прямую О1О2.

Иногда в качестве направляющей исполь­зуют линию, по которой движется некото­рая характерная для образующей точка, но не лежащая на ней, например центр окруж­ности.

Из различных форм образующих, направ­ляющих, а также закономерностей образова­ния конкретной поверхности выбирают те, которые являются наиболее простыми и удоб­ными для изображения на чертеже поверхнос­ти и решения задач, связанных с нею.

Иногда для задания поверхности используют понятие опре­делитель поверхности, под которым подразумевают совокуп­ность независимых условий, однозначно задающих поверхность. В числе условий, входящих в состав определителя, различают геометрическую часть (точки, линии, поверхности) и закон (алгоритм) образования поверхности геометрической частью оп­ределителя.

Рассмотрим краткую классификацию кривых поверхностей, принятую в начертательной геометрии.

Линейчатые развертываемые поверхности. Поверхность, ко­торая может быть образована движением прямой линии, назы­вают линейчатой поверхностью. Если линейчатая поверхность может быть развернута так, что всеми своими точками она со­вместится с плоскостью без каких-либо повреждений поверхно­сти (разрывов или складок), то ее называют развертываемой. К развертываемым поверхностям относятся только такие линей­чатые поверхности, у которых смежные прямолинейные образу­ющие параллельны, или пересекаются между собой, или являются касательными к некоторой заданной пространствен­ной кривой. Все остальные линейчатые и все нелинейчатые по­верхности относятся к неразвертываемым поверхностям.

Рисунок 51 Рисунок 52 Рисунок 53

 

Развертываемые поверхности — цилиндрические, конические, с ребром возврата или торсовые. У цилиндрической поверхности образующие всегда параллельны, направляющая — одна кривая линия. Изображение на чертеже ранее показанной в простран­стве цилиндрической поверхности (см. рисунок 49) представлено на рисунке 51. Частные случаи — прямой круговой цилиндр, наклонный круговой цилиндр. У конических поверхностей все прямолинейные образующие имеют общую неподвижную точ­ку — вершину, направляющая — одна любая кривая линия. При­мер изображения конической поверхности на чертеже — рису­нок 52, проекции вершины s', s, направляющей c'd'e' cde. Частные случаи — прямой круговой конус, наклонный круговой конус. У поверхностей с ребром возвра­та или торсовых прямолинейные образующие касательны к одной криволинейной направляющей.

Линейчатые неразвертываемые поверхности: цилиндроид, коноид, гиперболический параболоид (косая плоскость). Повер­хность, называемая цилиндроидом, образуется при перемеще­нии прямой линии, во всех своих положениях сохраняющей па­раллельность некоторой заданной плоскости («плоскости параллелизма») и пересекающей две кривые линии (две направ­ляющие). Поверхность, называемая коноидом, образуется при перемещении прямой линии, во всех своих положениях сохраня­ющей параллельность некоторой плоскости («плоскости паралле­лизма») и пересекающей две направляющие, одна из которых кривая, а другая прямая линия (рисунок 53). Плоскостью параллелизма на рисунке 53 является плоскость Н, направляющие — кривая с проекциями a'g'q', agq, прямая с проекциями о1’о2’, о1 о2. В частном случае, если криволи­нейная направляющая — цилиндрическая винтовая линия с осью, совпадающей с прямолинейной направляющей, образу­емая поверхность — винтовой коноид, рассматриваемый ниже.

Рисунок 54 Рисунок 55

 

Чертеж гиперболического парабо­лоида, называемого косой плос­костью, приведен на рисунке 54. Образование этой поверхности можно рассматривать как резуль­тат перемещения прямолинейной образующей по двум направляю­щим — скрещивающимся прямым параллельно некоторой плоскости параллелизма. На рисунке 54 плоскость параллелизма — плос­кость проекций Н, направляю­щие — прямые с проекциями т'п' тп и q'g', qg.

Нелинейчатые поверхности. Их подразделяют на поверхнос­ти с постоянной образующей и поверхности с переменной обра­зующей.

Поверхности с постоянной образующей в свою очередь подразделяют на поверхности вращения с криволинейной об­разующей, например сфера, тор, эллипсоид вращения и др., и на цик­лические поверхности, напри­мер поверхности изогнутых труб постоянного сечения, пружин.

Поверхности с переменной образующей подразделяют на по­верхности циклические с переменной образующей, топографи­ческие поверхности аффинных и подобных линий и т. д. Чертеж поверхности второго порядка — эллипсоида — приведен на ри­сунке 55. Образующая эллипсоида — деформирующийся эл­липс, одна из проекций которого, например, d"e"b"f". Две направляющие — два пересекающихся эллипса, плоскости ко­торых ортогональны и одна ось общая, например с проекциями a'e'c'f' и adcb. Образующая пересекает направляющие в край­них точках своих осей. Плоскость образующего эллипса при пе­ремещении остается параллельной плоскости, образованной двумя пересекающимися осями направляющих эллипсов. Циклические поверхности с переменной образующей имеют образу­ющую — окружность переменного радиуса, направляющую — кри­вую, по которой перемещается центр образующей, плоскость образующей перпендикулярна к направляющей.

Каркасную поверхность задают некоторым множеством ли­ний или точек поверхности. Обычно такие линии — плоские кривые, плоскости которых параллельны между собой. Два пересекающихся семейства линий каркаса образуют сетчатый каркас поверхности. Точки пересечения линий образуют то­чечный каркас поверхности. Точечный каркас поверхности может быть задан и координатами точек поверхности. Каркас­ные поверхности широко используют при конструировании корпусов судов, самолетов, автомобилей, баллонов электрон­но-лучевых трубок. Из указанных поверхностей рассмотрим более подробно вин­товую.

Винтовые поверхности. Винтовые поверхности весьма широко используют в техни­ке для формообразования деталей различного назначения. Винтовая поверхность образуется при движении прямоли­нейной образующей по двум направляющим, одна из которых винтовая линия, другая — ось винтовой линии, которую обра­зующая пересекает под постоянным углом.

Прямая винтовая поверхность. У прямой винтовой поверх­ности угол между образующей и осью равен 90°. Это винто­вой коноид или прямой геликоид. Чертеж прямой винтовой поверхности приведен на рисунке 56. Перемещаясь в направ­лении, как указано стрелкой на горизонтальной проекции, отрезок АВ движется вдоль оси вверх и образует правую вин­товую поверхность.

В сечении прямой винтовой поверхности (рисунок 57) плоско­стями, перпендикулярными оси или проходящими через ось, получаются отрезки прямолинейной образующей. Используя их, можно построить точки на винтовой поверхности. Так, на ри­сунке 69 по горизонтальной проекции а точки А построена ее фронтальная проекция а' на фронтальной проекции образующей 1'2' в секущей плоскости Q (Qh). По фронтальной проекции b' точки В построена ее горизонтальная проекция b на горизон­тальной проекции образующей 3—4 всекущей плоскости R.

Косая винтовая поверхность. Если у винтовой поверхности угол между образующей и осью не равен 90°, то ее называют косой винтовой поверхностью. Изображение косой винтовой поверхности — наклонного геликоида приведено на рисун­ке 70, а. Проекции отрезка АО — образующей изображены в ряде последовательных положений: от первого до тринадца­того. Точка А образующей перемещается по винтовой линии. Соответствующие положения проекций точки О отмечают на оси, руководствуясь тем, что проекция отрезка АО на ось вра­щения постоянна по величине.

 

Рисунок 56 Рисунок 57

 

 

Поверхности вращения. Поверхности вращения и ограничиваемые ими тела имеют широкое применение во многих областях техники. В зависимости от вида образующей поверхности вращения могут быть ли­нейчатыми, нелинейчатыми или состо­ять из частей таких поверхностей.

Поверхностью вращения называют поверхность, получающуюся от враще­ния некоторой образующей линии вокруг неподвижной прямой— оси поверхности. Образующая линия может в общем случае иметь как кри­волинейные, так и прямолинейные участки. Поверхность вращения на чер­теже можно задать образующей и по­ложением оси. На рисунке 58 изоб­ражена поверхность вращения, которая образована вращением образующей вокруг оси ОО1, перпендикулярной плоскости Н. При вращении каждая точка образующей описывает окруж­ность, плоскость которой перпендикулярна оси. Соответственно линия пересечения поверхности вра­щения любой плоскостью, перпендикулярной оси, является окружностью. Такие окружности называют параллелями. Наибольшую параллель из двух соседних с нею параллелей по обе стороны от нее называют экватором, анало­гично наименьшую — горлом.

Плоскость, проходящую через ось поверхности вращения, называют меридиональной, линию ее пересечения с поверхно­стью вращения — меридианом. Если ось поверхности параллельна плоскости проекций, то меридиан, лежащий в плоскости, параллельной этой плоскости проекций, называют главным меридианом. На эту плоскость проекций главный меридиан проецируется без искажений.

Наиболее удобными для выполнения изображений поверх­ностей вращения являются случаи, когда их оси перпендику­лярны к плоскости Н, к плоскости V или к плоскости W.

Некоторые поверхности вращения являются частными слу­чаями поверхностей, рассмотренных ранее, например цилиндр вращения, конус вращения. Для цилиндра и конуса вращения меридианами являются прямые линии. Они параллельны оси и равноудалены от нее для цилиндра или пересекают ось в од­ной и той же ее точке под одним и тем же углом к оси для конуса. Цилиндр и конус вращения — поверхности, беско­нечные в направлении их образующих; поэтому на изображе­ниях их ограничивают какими-либо линиями, например линиями пересечения этих поверхностей с плоскостями проек­ций или какими-либо из параллелей. Из стереометрии извест­но, что прямой круговой цилиндр и прямой круговой конус ограничены поверхностью вращения и плоскостями, перпен­дикулярными к оси поверхности. Меридиан такого цилинд­ра — прямоугольник, конуса — треугольник.

 

 

Рисунок 58

Такая поверхность вращения, как сфера, является ограни­ченной и может быть изображена на чертеже полностью. Эква­тор и меридианы сферы — равные между собой окружности. При ортогональном проецировании на все три плоскости про­екций очертания сферы проецируются в окружность.

При вращении окружности (или ее дуги) вокруг оси, лежащей в плоскости этой окружности, но не проходящей через ее центр, получается поверхность с названием тор. На ри­сунке 59 приведены: открытый тор, или круговое кольцо, — рисунок 59, а, закрытый тор — рисунок 59, б, самопересека­ющийся тор — рисунок 59, в, г. Тор (рис. 59, г) называют также лимоновидным. На рисунке 59 они изображены в по­ложении, когда ось тора перпендикулярна к плоскости про­екций Н. В открытый и закрытый торы могут быть вписаны сферы. Тор можно рассматривать как поверхность, огибаю­щую одинаковые сферы, центры которых находятся на ок­ружности.

В построениях на чертежах широко используют две системы круговых сечений тора: в плоскостях, перпендикулярных к его оси, и в плоскостях, проходящих через ось тора. При этом в плоскостях, перпендикулярных к оси тора, в свою очередь имеются два семейства окружностей — линий пересечения плоскостей с наружной поверхностью тора и линий пересечения плоскостей с внутренней поверхностью тора. У лимоновидного тора имеется только первое семейство окружностей. Кроме того, тор имеет еще и третью систему круговых сече­ний, которые лежат в плоскостях, проходящих через центр тора и касательных к его внутренней поверхности.

 

Рисунок 59

 

Точки на поверхности вращения. Положение точки на по­верхности вращения определяют по принадлежности точки ли­нии каркаса поверхности, т. е. с помощью окружности, проходящей через эту точку на поверхности вращения. В слу­чае линейчатых поверхностей для этой цели возможно приме­нение и прямолинейных образующих. Применение параллели и прямолинейной образующей для построения проекций точек, принадлежащих данной поверхности вращения, показано на рисунке 60.

Рисунок 60 Рисунок 61

 

На рисунке 60 показано построение проекций точки К, принадлежащей поверхности тора. Следует отметить, что по­строение выполнено для видимых горизонтальной проекции к и фронтальной проекции к'.

На рисунке 61 показано построение по заданной фрон­тальной проекции т' точки на поверхности сферы ее гори­зонтальной т и профильной т" проекций. Проекция т построена с помощью окружности — параллели, проходящей через проекцию т'. Ее радиус о1. Проекция т" постро­ена с помощью окружности, плоскость которой параллельна профильной плоскости проекций, проходящей через проек­цию т'. Ее радиус о"2".

 

РАЗВЕРТКИ ПОВЕРХНОСТЕЙ

Развертка пирамиды. Развертка пи­рамиды осуществляется в следующем по­рядке:

а) определяют истинную величину всех ребер пирамиды любым из известных спо­собов. На рис. 72 способом вращения найдена длина боковых ребер и способом замены плоскостей проекций определено основание пирамиды;

б) по найденным трем сторонам (рис. 73) строят какую-либо из боковых граней, например SoAoBo, пристраивая к ней следующую SoBoCo, а затем и осталь­ные грани (масштаб развертки уменьшен);

в) достраивают основание пирамиды A0BoCoDo.

Точки, расположенные внутри контура развертки, находятся во взаимно одноз­начном соответствии с точками поверхно­сти многогранника. Но каждой точке тех ребер, по которым многогранник разрезан, на развертке соответствуют две точки, принадлежащие контуру развертки. При­мером первой пары точек на рисунках слу­жат точки Ко, а иллюстрацией второго случая являются точки М и Мо.

Для определения точки Ко на развертке пришлось по ее ортогональным проекциям (рис. 74) найти длины отрезков AM (спо­собом замены плоскостей проекций) и SK (способом вращения). Эти отрезки и были использованы затем при построении на развертке сначала прямой SoMo и, нако­нец, точки Ко.

Рисунок 72

 

 

 

Рисунок 73

 

Развертки цилиндрической и конической поверхностей. Развертка цилиндрической поверхности выполняется аналогично развертке при­змы. Предварительно в заданный цилиндр вписывают n -угольную призму.

На рис. 74 выполнена развертка на­клонного эллиптического цилиндра. Так как нижнее основание его параллельно горизонтальной плоскости проекций, то для построения развертки использован способ раскатки. Параллельность образующих цилиндра горизонтальной плоскости проекций делает возможным выпол­нить развертку без предварительного пре­образования проекций.

 

 

Рисунок 74

 

Развертка конической поверхности вы­полняется аналогично развертке пирами­ды в следующем порядке. Сначала в за­данный конус вписывают n -угольную пи­рамиду (число п, зависящее от размеров и масштаба чертежа, следует брать в пре­делах от 8 до 12). Затем строят развертку боковой поверхности вписанной пирамиды. Соединив концы ребер плавной кривой, получают прибли­женную, развертку боковой поверхности конуса.

На ри



Поделиться:


Последнее изменение этой страницы: 2016-12-17; просмотров: 285; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.117.107.90 (0.145 с.)