Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Представление вещественных чисел в формате с плавающей запятой↑ ⇐ ПредыдущаяСтр 5 из 5 Содержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Числовые величины, которые могут принимать любые значения (целые и дробные) называются вещественными числами. Вещественные числа в памяти компьютера представляются в форме с плавающей точкой. Форма с плавающей точкой использует представление вещественного числа А в виде произведения мантиссы m на основание системы счисления q в некоторой целой степени p, которую называют порядком: А=m×qp Например, число 139,76 можно записать в виде: 0,13976×103. Здесь m = 0,13976 – мантисса, q=10 – основание системы счисления, p=3 – порядок. Порядок указывает, на какое количество позиций и в каком направлении должна «переплыть», т.е. сместиться десятичная в мантиссе. Отсюда название «плавающая точка». Однако справедливы и следующие равенства: 139,76=13,976×101 = 1,3976×102 = 0,013976х104 = 13976 х10-2 Получается, что представление числа в форме с плавающей точкой неоднозначно? Чтобы не было неоднозначности, в ЭВМ используют нормализованное представление числа в форме с плавающей точкой. Мантисса в нормализованном представлении должна удовлетворять условию: 1/n < | m | < 1, то есть мантисса меньше единицы и первая значащая цифра - не ноль. Следовательно, для рассмотренного числа нормализованным представлением будет: 0,13976х103. В разных типах ЭВМ применяются различные варианты представления чисел в форме с плавающей точкой. Пример. Пусть в памяти компьютера вещественное число представляется в форме с плавающей точкой в двоичной системе счисления (q=2) и занимает ячейку размером 4 байта. В ячейке должна содержаться следующая информация о числе: знак числа, порядок и значащие цифры мантиссы. Вот как эта информация располагается в ячейке:
В старшем бите 1-го байта хранится знак числа. В этом разряде 0 обозначает плюс, 1 – минус. Оставшиеся 7 бит первого байта содержат машинный порядок. В следующих трех байтах хранятся значащие цифры мантиссы. Что такое машинный порядок? В семи двоичных разрядах помещаются двоичные числа в диапазоне от 0000000 до 1111111. В десятичной системе это соответствует диапазону от 0 до 127. Всего 128 значений. Знак порядка в ячейке не хранится. Но порядок может быть как положительным, так и отрицательным. Разумно эти 128 значений разделить поровну между положительными и отрицательными значениями порядка. В таком случае между машинным порядком (одним из 128 значений) и истинным (назовем его математическим) устанавливается следующее соответствие:
Если обозначить машинный порядок Мq, а математический q, то связь между ними выразится формулой: Мq = q + 64 Итак, машинный порядок смещен относительно математического на 64 единицы и имеет только положительные значения. Полученная формула записана в десятичной системе счисления. В двоичной системе счисления формула имеет вид: Мq = q + 1 000 0002 При выполнении вычислений с плавающей точкой процессор это смещение учитывает. Алгоритм для получения представления действительного числа в памяти ЭВМ: 1) Перевести модуль данного числа в двоичную систему счисления; 2) Записать полученное двоичное число в нормализованном виде; 3) Определить машинный порядок с учетом смещения; 4) Учитывая знак заданного числа (0 – положительное; 1 – отрицательное), записать его представление в памяти ЭВМ.
Например, запишем внутреннее представление числа 139,76 в форме с плавающей точкой в 4-х байтовой ячейке: 1) Переведем десятичное 139,76 и запишем его 24-значащими цифрами: 139,7610 = 10001011,11000010100011112 2) Запишем полученное двоичное число в форме нормализованного двоичного числа с плавающей точкой: 10001011,11000010100011112 = 0,1000101111000010100011112 х101000, где 0,1000101111000010100011112 – мантисса; 10 – основание системы счисления (210=102); 1000 – порядок (810=10002). 3) Определим машинный порядок: Mq2 = 1000 + 1000000 = 1001000 4) Запишем представление числа в ячейке памяти:
Для того чтобы получить внутренне представление десятичного отрицательного числа -139,76 достаточно в полученном выше представлении заменить в разряде знака числа 0 на 1. Никакого инвертирования, как для отрицательных целых чисел, здесь не происходит.
Задачи для самостоятельного решения 1. Компьютер работает только с целыми положительными числами. Каков диапазон изменения чисел, если для представления числа в памяти компьютера отводится 4 байта? 2. Каков диапазон изменения целых чисел, если для представления числа в памяти компьютера отводится 4 байта? 3. Записать в двоичной и шестнадцатеричной форме внутреннее представление наибольшего положительного целого и наибольшего по абсолютной величине отрицательного целого числа, представленных в 1-байтовой ячейке памяти. 4. Получить внутреннее представление целого числа 160710 в 2-х байтовой ячейке памяти. 5. Получить внутреннее представление целого числа -160710 в 2-х байтовой ячейке памяти. 6. По шестнадцатеричной форме внутреннего представления целого числа F67D в 2х-байтовой ячейке восстановить само число. 7. Представить число 0,005089 в нормализованной форме с плавающей точкой в десятичной системе счисления. 8. Получите двоичную форму внутреннего представления действительных чисел 224,25 и -224,25 в формате с плавающей точкой в 4-х байтовой ячейке. 9. Запишите в десятичной системе счисления целое число, если его дополнительный код 1000000110101110. Список литературы
Основная литература 1. Информатика (курс лекций) / В. Т. Безручко. - М.: ИД "Форум": ИНФРА-М., 2006. – 432с. 2. Информатика: 3-е изд. перераб. / под ред. Н.В.Макаровой. – М.: Финансы и статистика, 2009. – 768 с. 3. Информатика / В. А. Каймин. – М.: ИД "Форум": ИНФРА-М, 2008. – 285 с. 4. Информатика: аппаратные средства персонального компьютера: Учеб. пособие. / В. Н. Яшин. - М.: ИНФРА-М, 2008. – 254 с. 5. Информатика. Учебное пособие / Попова О.В. Красноярск: Красноярский институт экономики Санкт-Петербургской академии управления и экономики (НОУ ВПО), 2007. — 186 с.
Дополнительная литература 1. Информатика, часть 1: Учебно-методическое пособие для студентов очной и заочной форм обучения / Болотов А. М., Вологжанин О.Ю., Катанова Т.Н., Сыромятников И.И., Хренова Н.Ф. - Пермский институт (филиал) ГОУ ВПО "Российский государственный торгово-экономический университет": Издательство "ОТ и ДО", 2009. – 163 стр. 2. Введение в информатику. Лабораторные работы. / Авт.-сост. А.П. Шестаков; Перм. ун-т. — Пермь, 1999. (Ч. I — 56 с.) 3. Арифметические операции в позиционных системах счисления. Электронный ресурс: http://www.chebgym5.ru/inf/p32aa1.html 4. Представление информации в компьютере. Электронный ресурс: http://ulkolledg.narod.ru/material/Burdina_2/index.htm
|
||||||||||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-12-16; просмотров: 6220; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.225.72.181 (0.007 с.) |