Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Системы счисления и формы представления чиселСодержание книги
Поиск на нашем сайте
Информация в ЭВМ кодируется, как правило, в двоичной или в двоично-десятичной системе счисления. Система счисления – это способ наименования и изображения чисел с помощью символов, имеющих определенные количественные значения.
В зависимости от способа изображения чисел системы счисления делятся на позиционные и непозиционные. В позиционной системе счисления количественное значение каждой цифры зависит от ее места (позиции) в числе. В непозиционной системе счисления цифры не меняют своего количественного значения при изменении их расположения в числе. Количество (Р) различных цифр, используемых для изображения числа в позиционной системе счисления, называется основанием системы счисления. Значения цифр лежат в пределах от 0 до Р- 1. В общем случае запись любого смешанного числа в системе счисления с основанием Р будет представлять собой ряд вида:
где нижние индексы определяют местоположение цифры в числе (разряд): § положительные значения индексов – для целой части числа (т разрядов); § отрицательные значения – для дробной (s разрядов), Пример 4.1. Позиционная система счисления – арабская десятичная система, в которой: основание Р=10, для изображения чисел используются 10 цифр (от 0 до 9). Непозиционная система счисления – римская, в которой для каждого числа используется специфическое сочетание символов (XIV, CXXVII и т.п.).
Максимальное целое число, которое может быть представлено в т разрядах:
Минимальное значащее (не равное 0) число, которое можно записать в s разрядах дробной части:
Имея в целой части числа т, а в дробной s разрядов, можно записать всего Р m+s разных чисел. Двоичная система счисления имеет основание Р=2 и использует для представления информации всего две цифры: 0 и 1. Существуют правила перевода чисел из одной системы счисления в другую, основанные в том числе и на соотношении (1).
Пример 4.2.
В вычислительных машинах применяются две формы представления двоичных чисел: § естественная форма или форма с фиксированной запятой (точкой); § нормальная форма или форма с плавающей запятой (точкой). С фиксированной запятой все числа изображаются в виде последовательности цифр с постоянным для всех чисел положением запятой, отделяющей целую часть от дробной. Пример 4.3. В десятичной системе счисления имеются 5 разрядов в целой части числа (до запятой) и 5 разрядов в дробной части числа (после запятой); числа, записанные в такую разрядную сетку, имеют вид: +00721,35500; +00000,00328; -10301,20260.
Эта форма наиболее проста, естественна, но имеет небольшой диапазон представления чисел и поэтому не всегда приемлема при вычислениях. Пример 4.4. Диапазон значащих чисел (N) в системе счисления с основанием Р при наличии т разрядов в целой части и s разрядов в дробной части числа (без учета знака числа) будет: При Р = 2, m = 10 и s = 6: 0,015 £ N £1024.
Если в результате операции получится число, выходящее за допустимый диапазон, происходит переполнение разрядной сетки, и дальнейшие вычисления теряют смысл. В современных ЭВМ естественная форма представления используется как вспомогательная и только для целых чисел. С плавающей запятой каждое число изображается в виде двух групп цифр. Первая группа цифр называется мантиссой, вторая – порядком, причем абсолютная величина мантиссы должна быть меньше 1, а порядок – целым числом. В общем виде число в форме с плавающей запятой может быть представлено так:
где М – мантисса числа r – порядок числа (r – целое число); Р – основание системы счисления. Пример 4.5. Приведенные в примере 4.3 числа в нормальной форме запишутся так: +0,721355*103; +0,328*10-3; -0,103012026* 105.
Нормальная форма представления имеет огромный диапазон отображения чисел и является основной в современных ЭВМ. Пример 4.6. Диапазон значащих чисел в системе счисления с основанием Р при наличии т разрядов у мантиссы и s разрядов у порядка (без учета знаковых разрядов порядка и мантиссы) будет:
При Р=2, т=10 и s=6 диапазон чисел простирается примерно от 10-19 до 1019.
Знак числа обычно кодируется двоичной цифрой, при этом код 0 означает знак "+", код 1 – знак "-". Примечание. Для алгебраического представления чисел (т.е. для представления положительных и отрицательных чисел) в машинах используются специальные коды: прямой, обратный и дополнительный. Причем два последних позволяют заменить неудобную для ЭВМ операцию вычитания на операцию сложения с отрицательным числом; дополнительный код обеспечивает более быстрое выполнение операций, поэтому в ЭВМ применяется чаще именно он. Двоично-десятичная система счисления получила большое распространение в современных ЭВМ ввиду легкости перевода в десятичную систему и обратно. Она используется там, где основное внимание уделяется не простоте технического построения машины, а удобству работы пользователя. В этой системе счисления все десятичные цифры отдельно кодируются четырьмя двоичными цифрами (табл. 4.1) и в таком виде записываются последовательно друг за другом.
Таблица 4.1. Таблица двоичных кодов десятичных и шестнадцатеричных цифр
Пример 4.7. Десятичное число 9703 в двоично-десятичной системе выглядит так: 1001011100000011.
При программировании иногда используется шестнадцатеричная система счисления, перевод чисел из которой в двоичную систему счисления весьма прост – выполняется поразрядно (полностью аналогично переводу из двоично-десятичной системы). Для изображения цифр, больших 9, в шестнадцатеричной системе счисления применяются буквы А = 10, В = 11, С = 12, D = 13, Е = 14, F = 15. Пример 4.8. Шестнадцатеричное число F17B в двоичной системе выглядит так: 1111000101111011. Варианты представления информации в ПК
Вся информация (данные) представлена в виде двоичных кодов. Дня удобства работы введены следующие термины, обозначающие совокупности двоичных разрядов (табл. 4.2). Эти термины обычно используются в качестве единиц измерения объемов информации, хранимой или обрабатываемой в ЭВМ.
Таблица 4.2. Двоичные совокупности
Последовательность нескольких битов или байтов часто называют полем данных. Биты в числе (в слове, в поле и т.п.) нумеруются справа налево, начиная с 0-го разряда. В ПК могут обрабатываться поля постоянной и переменной длины. Поля постоянной длины: слово – 2 байта двойное слово – 4 байта полуслово – 1 байт расширенное слово – 8 байт слово длиной 10 байт – 10 байт
Числа с фиксированной запятой чаще всего имеют формат слова и полуслова, числа с плавающей запятой – формат двойного и расширенного слова. Поля переменной длины могут иметь любой размер от 0 до 256 байт, но обязательно равный целому числу байтов. Пример 4.9. Структурно запись числа -193(10) = -11000001(2) в разрядной сетке ПК выглядит следующим образом. Число с фиксированной запятой формата слово со знаком:
Число с плавающей запятой формата двойное слово:
Двоично-кодированные десятичные числа могут быть представлены в ПК полями переменной длины в так называемых упакованном и распакованном форматах. В упакованном формате для каждой десятичной цифры отводится по 4 двоичных разряда (полбайта), при этом знак числа кодируется в крайнем правом полубайте числа (1100 – знак "+" и 1101 – знак "-"). Структура поля упакованного формата:
Здесь и далее: Цф – цифра, Знак – знак числа. Упакованный формат используется обычно в ПК при выполнении операций сложения и вычитания двоично-десятичных чисел. В распакованном формате для каждой десятичной цифры отводится по целому байту, при этом старшие полубайты (зона) каждого байта (кроме самого младшего) в ПК заполняются кодом 0011 (в соответствии с ASCII-кодом), а в младших (левых) полубайтах обычным образом кодируются десятичные цифры. Старший полубайт (зона) самого младшего (правого) байта используется для кодирования знака числа. Структура поля распакованного формата: Распакованный формат используется в ПК при вводе-выводе информации в ПК, а также при выполнении операций умножения и деления двоично-десятичных чисел.
Коды ASCII
Распакованный формат представления двоично-десятичных чисел (иногда его называют "зонный") является следствием использования в ПК ASCII-кода для представления символьной информации. Код ASCII (American Standard Code for Information Interchange – Американский стандартный код для обмена информацией) имеет основной стандарт и его расширение (табл. 4.3). Основной стандарт для кодирования символов использует шестнадцатиричные коды 00 - 7F, расширение стандарта – 80 - FF. Основной стандарт является международным и используется для кодирования управляющих символов, цифр и букв латинского алфавита; в расширении стандарта кодируются символы псевдографики и буквы национального алфавита (естественно, в разных странах разные).
Таблица 4.3. Таблица кодов ASCII
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-12-10; просмотров: 361; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.116.20.205 (0.008 с.) |