Логические Основы построения ПК 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Логические Основы построения ПК

Поиск

Основы алгебры логики

 

Для анализа и синтеза схем в ЭВМ при алгоритмизации и программировании решения задач широко используется математический аппарат алгебры логики.

Алгебра логики – это раздел математической логики, значения всех элементов (функций и аргументов) которой определены в двухэлементном множестве: 0 и 1. Алгебра логики оперирует с логическими высказываниями.

Высказывание – это любое предложение, в отношении которого имеет смысл утверждение о его истинности или ложности. При этом считается, что высказывание удовлетворяет закону исключенного третьего, т.е. каждое высказывание или истинно, или ложно и не может быть одновременно и истинным, и ложным.

Пример 4.11. Высказывания: "Сейчас идет снег" – это утверждение может быть истинным или ложным; "Вашингтон – столица США" – истинное утверждение; "Частное от деления 10 на 2 равно 3" – ложное утверждение.

 

В алгебре логики все высказывания обозначают буквами а, b, с и т.д. Содержание высказываний учитывается только при введении их буквенных обозначений, и в дальнейшем над ними можно производить любые действия, предусмотренные данной алгеброй. Причем если над исходными элементами алгебры выполнены некоторые разрешенные в алгебре логики операции, то результаты операций также будут элементами этой алгебры.

Простейшими операциями в алгебре логики являются операции логического сложения (иначе, операция ИЛИ, операция дизъюнкции) и логического умножения (иначе, операция И, операция конъюнкции). Для обозначения операции логического сложения используют символы + или V, а логического умножения – символы * или ö.

Правила выполнения операций в алгебре логики определяются рядом аксиом, теорем и следствий.

В частности, для алгебры логики выполняются законы:

1) сочетательный:

 

 

2) переместительный:

 

 

3) распределительный:

 

 

Справедливы соотношения:

 

Наименьшим элементом алгебры логики является 0, наибольшим элементом – 1. В алгебре логики также вводится еще одна операция – операция отрицания (иначе, операция НЕ, операция инверсии), обозначаемая чертой над элементом.

По определению:

Справедливы, например, такие соотношения:

Функция в алгебре логики – это алгебраическое выражение, содержащее элементы алгебры логики а, b, с..., связанные между собой операциями, определенными в этой алгебре.

Пример 4.12. Примеры логических функций:

 

Согласно теоремам разложения функций на конституэнты (составляющие) любая функция может быть разложена на конституэнты "1":

 

 

и т.д.

Эти соотношения используются для синтеза логических функций и вычислительных схем.



Поделиться:


Последнее изменение этой страницы: 2016-12-10; просмотров: 323; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.139.236.144 (0.009 с.)