Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Геометрический смысл теоремы ЛагранжаСодержание книги
Поиск на нашем сайте
Величина является угловым коэффициентом секущей, проходящей через точки M1 (a; f (a)) и M2(b; f (b)) графика функции у = f (x), a f ' (c) — угловой коэффициент касательной к графику в точке (c; f (c)). Из теоремы Лагранжа следует, что существует точка " c " такая, что касательная к графику в точке (c; f (c)) параллельна секущей M1M2. Таких точек может быть и несколько, но, по крайней мере, одна всегда существует. f (x) − f (x 0) ≈ f '(x 0)·(x −x 0). Отличие только лишь в выборе точки для подсчета значения производной и в знаке равенства. Теорема Коши Пусть функции f (x) и g (x) непрерывны на [ a, b ] и дифференцируемы на (a, b). Пусть, кроме того, во всех точках интервала (a, b) функция g (x) имеет ненулевую производную g ' (x) ≠ 0. Тогда существует точка c Î (a, b), такая, что справедлива формула Д о к а з а т е л ь с т в о. Покажем сначала, что знаменатель левой части формулы не обращается в ноль. Если допустить, что g (b) = g (a), то по теореме Ролля для функции g (x) найдется точка x Î (a, b), в которой g ' (x) = 0. А это противоречит условию, что g ' (x) ≠ 0 на (a, b). . Функция F (x) на [ a, b ] удовлетворяет условиям теоремы Ролля: F(x) непрерывна на [ a, b ], дифференцируема на (a, b), и, кроме того, на концах интервала принимает равные значения F (a) = F (b) = 0. По теореме Ролля для F (x) существует точка c Î (a, b), такая,что F ' (c) = 0. Так как , то . Откуда, учитывая, что g '(c) ≠ 0, следует искомое соотношение.
Правило Лопиталя. Первое правило Лопиталя Пусть функции f (x) и g (x) непрерывны на отрезке [ а, b ] и дифференцируемы на интервале (а, b), и пусть g ' (x) ≠ 0 всюду в (а, b). Пусть, далее, известно, что f (а) = g (а) = 0. Тогда говорят, что отношение при х → а + 0 представляет собой неопределённость вида . , то и . Доказательство. Предположим, что ∞ < A < + ∞. Для заданного как угодно малого числа e > 0 выберем х 0 так, чтобы в интервале (а, x 0) выполнялось неравенство . Применим теорему Коши к отрезку [ а, x 0], Если х [ а, x 0], то существует такая точка с [ а, x ], что и, следовательно, для всех х [ а, x 0] справедливо неравенство . Это означает, что . Второе правило Лопиталя Пусть функции f (x) и g (x) непрерывны и дифференцируемы в интервале (a, b) (может быть, бесконечном) и g ' (x) не обращается в нуль в (a, b). Пусть известно, что . Тогда говорят, что отношение при х → а + 0 представляет собой неопределённость вида . , то и . Доказательство. Пусть А конечно. Для заданного как угодно малого числа ε > 0 выберем х 0 так, чтобы в интервале (а, x 0) выполнялось неравенство . Определим функцию D (x, x 0) из условия . Имеем при x → a + 0. Применяя к отрезку [ x, x 0] теорему Коши, получаем, что некоторой точки с [ x, x 0] Отсюда для всех х, для которых | D (x, x 0) - 1 | < ε, находим Так как ε произвольно мало, то , что и требовалось доказать.
Формула Тейлора.
Пусть функция f (x) имеет в точке а и некоторой её окрестности производные порядка n + 1. Пусть x ≠ a есть любое значение аргумента из указанной окрестности, тогда между точками а и х найдётся такая точка с, что справедлива формула . Доказательство. Положим , . Функция F (x) имеет производные до порядка n + 1 вместе с функцией f (x). Функция G (x) имеет производные всех порядков, причём её производные положительны при х > a. Легко проверить, что , и поэтому F (m)(а) = f (m)(а) – f (m)(а) = 0 при m = 0, 1, …, n. Так как G (m)(а) = 0 при m = 0, 1, …, n, то выполнены все условия обобщённой формулы Коши. При этом очевидно, что F (n + 1)(х) = f (n + 1)(х), G (n + 1)(х) = (n + 1)! Применение обобщённой формулы Коши к этим функциям приводит к соотношению , откуда и получается формула Тейлора с остаточным членом в форме Лагранжа . Как видно, функция раскладывается на две части. Главная часть называется многочленом Тейлора порядка n. Второе слагаемое называется остаточным членом функции в форме Лагранжа. , где с (0; х). Формула Тейлора позволяет функцию f (x), возможно, сложной природы, заменить приблизительно сравнительно простой функцией — многочленом.
|
||||
Последнее изменение этой страницы: 2016-12-14; просмотров: 471; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.14.255.58 (0.005 с.) |