Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Виды злп и способы перехода от одного вида к другому.Содержание книги
Поиск на нашем сайте
Одна и та же ЗЛП может быть сформулирована в различных эквивалентных формах. Наиболее важными формами задачи линейного программирования являются каноническая и стандартная. В канонической форме задача является задачей на максимум (минимум) некоторой линейной функции F, ее система ограничений состоит только из равенств (уравнений). При этом переменные задачи х1, х2,..., хn являются неотрицательными: К канонической форме можно преобразовать любую задачу линейного программирования. Правило приведения ЗЛП к каноническому виду: 1. Если в исходной задаче некоторое ограничение (например, первое) было неравенством, то оно преобразуется в равенство, введением в левую часть некоторой неотрицательной переменной, при чем в неравенства «≤» вводится дополнительная неотрицательная переменная со знаком «+»; в случаи неравенства «≥» - со знаком «-» (32.1) Вводим переменную Тогда неравенство (32.1) запишется в виде: В каждое из неравенств вводится своя “ уравнивающая ” переменная, после чего система ограничений становится системой уравнений. Число вводимых дополнительных неотрицательных переменных при преобразовании ограничений-неравенств в ограничения-равенства равно числу преобразуемых неравенств. Вводимые дополнительные переменные имеют вполне определенный экономический смысл. Так, если в ограничениях исходной задачи линейного программирования отражаются расход и наличие производственных ресурсов, то числовое значение дополнительной переменной в плане задачи, записанной в основной форме, равно объему неиспользуемого соответствующего ресурса. 2. Если в исходной задаче некоторая переменная не подчинена условию неотрицательности, то ее заменяют (в целевой функции и во всех ограничениях) разностью неотрицательных переменных 3. Если в ограничениях правая часть отрицательна, то следует умножить это ограничение на (-1) 4. Наконец, если исходная задача была задачей на минимум, то введением новой целевой функции F1 = -F мы преобразуем нашу задачу на минимум функции F в задачу на максимум функции F1. Таким образом, всякую задачу линейного программирования можно сформулировать в канонической форме. В стандартной форме задача линейного программирования является задачей на максимум (минимум) линейной целевой функции. Система ограничений ее состоит из одних линейных неравенств типа «<=» («>=»). Все переменные задачи неотрицательны.
Всякую задачу линейного программирования можно сформулировать в стандартной форме. Приведение к стандартной форме необходимо, таккакбольшинство методов решения задач линейного программирования разработано именно для стандартной формы. Для приведения к стандартной форме задачи линейного программирования может потребоваться выполнить следующие действия: - перейти от минимизации целевой функции к ее максимизации; - изменить знаки правых частей ограничений; - перейти от ограничений-равенств к неравенствам; - избавиться от переменных, не имеющих ограничений на знак.. Примеры: 1. Привести к каноническому виду задачу Введем дополнительные переменные x3 , x4 , x5. Причем в первое неравенство введем неотрицательную переменную x3 со знаком минус, а во второе и в третье – со знаком плюс переменные x4 , x5 запишем задачу в виде:
что и дает эквивалентную задачу в канонической форме. 2. Привести к стандартному виду задачу Выразим через и остальные переменные:
Целевая функция будет выглядеть следующим образом: Или, после упрощения: Так как , то перепишем нашу систему следующим образом: . Итак, эквивалентная задача в стандартной форме будет выглядеть следующим образом:
|
|||||
Последнее изменение этой страницы: 2016-12-14; просмотров: 4409; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 13.59.54.188 (0.008 с.) |