![]() Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву ![]() Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Малые колебания механических системСодержание книги
Поиск на нашем сайте
Из курса «Теоретическая механика» известно, что положение механической системы с В случае голономных связей уравнения Лагранжа второго рода имеют вид:
где
коэффициенты которой зависят от координат Для консервативных действующих сил элементарная работа равна уменьшению потенциальной энергии
Пусть точка
то есть положения равновесия системы возможны только в стационарных точках потенциальной энергии. Можно показать, что точка минимума потенциальной энергии отвечает устойчивому положению равновесия. Рассмотрим такую точку. Без ограничения общности можно считать, что в этой точке
Так как обе квадратичные формы
приводящие квадратичные формы
В обобщенных координатах
решения которых могут быть записаны в виде
где константы
|
|||||||||||||||||
Последнее изменение этой страницы: 2016-12-12; просмотров: 315; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 216.73.216.158 (0.008 с.) |