Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Типовой экзаменационный билетСодержание книги
Поиск на нашем сайте
1. Докажите теорему о единственности предела сходящейся последовательности. 2. Докажите теорему Бернулли – Лопиталя для предела отношения двух бесконечно малых функций. 3. Вычислите предел . 4. Исследуйте функцию и постройте ее график. Литература Основная литература (ОЛ) 1. Морозова В.Д. Введение в анализ. – М.: Изд-во МГТУ им. Н.Э. Баумана, 2005. – 408 с. 2. Иванова Е.Е. Дифференциальное исчисление функций одного аргумента. – М.: Изд-во МГТУ им. Н.Э. Баумана, 2001. – 408 с. 3. Пискунов Н.С. Дифференциальное и интегральное исчисления для втузов. Т. 1. – М.: Интеграл-Пресс, 2006. – 416 с. 4. Сборник задач по математике для втузов. Ч. 1. Линейная алгебра и основы математического анализа: Учеб. пособие для втузов / Под ред. А.В. Ефимова, Б.П. Демидовича. – М.: Наука, 1993. – 478 с Дополнительная литература (ДЛ)) 1. Ильин В.А., Позняк Э.Г. Основы математического анализа. Ч. 1. – 4-е изд., перераб. и доп. – М.: Наука, 1982. – 616 с. 2. Кудрявцев Л.Д. Курс математического анализа. В 3-х т. Т. 1. – М.: Высшая школа, 1988. – 718 с. 3. Бугров Я.С., Никольский С.М. Дифференциальное и интегральное исчисление. – М.: Наука, 1988. – 431 с. 4. Задачи и упражнения по математическому анализу для втузов / Под ред. Б.П. Демидовича. – М.: Астрель, 2003. – 472 с. 5. Вся высшая математика: Учебник для втузов: В 6 т. / Краснов М.Л., Киселев А.И., Макаренко и др. – Т. 1. – М.: Эдиториал УРСС, 2000. – 328 с.
Методические пособия 1. Галкин С.В. Математический анализ. Методические указания по материалам лекций для подготовки к экзамену в первом семестре. – М.: Изд-во МГТУ им. Н.Э. Баумана, 2004. – 116 с. 2. Грибов А.Ф., Котович А.В., Минеева О.М. Кривые на плоскости, заданные параметрически и в полярной системе координат. – М.: Изд-во МГТУ им. Н.Э. Баумана, 2004. 3. Казанджан Э.П. Исследование функций и построение графиков. – М.: Изд-во МГТУ им. Н.Э. Баумана, 1995. 4. Ильичев А.Т., Кузнецов В.В., Фаликова И.Д. Графики элементарных функций. – М.: Изд-во МГТУ им. Н.Э. Баумана, 2004. 5. Соболев С. К., Ильичев А. Т. Исследование и построение плоских кривых, заданных параметрически и в полярных координатах. – М.: Изд-во МГТУ им. Н.Э. Баумана, 2004. – 80 с. 6. Казанджан Э.П., Казанджан Г.П. Вычисление пределов. – М.: Изд-во МГТУ им. Н.Э. Баумана, 1995. 7. Кузнецов В.В., Коньков А.А., Соболев С.К. Множества и элементы математической логики. – М.: МГТУ, 1989. – 48 с. 8. Под ред. Ивановой Е.Е. Введение в анализ.-М., МГТУ, 1990.-85с. 9. Казанджан Г.П., Казанджан Э.П. Рабочий справочник по математике. – М., МГТУ, 2002. 10. Михайлова Т.Ю., Поляшова Р.Г., Титов К.В. Исследование свойств функций и построение графиков. Формула Тейлора и ее приложения. – М.: Изд-во МГТУ им. Н.Э. Баумана, 2002. 11. Казанджан Э.П. Графики. Сборник задач с примерами решений по исследованию функций и построению графиков. – М.: Изд-во МГТУ им. Н.Э. Баумана, 2004. 12. Дуров В.В., Мастихин А.В., Савин А.С. Пределы и непрерывность функций. – М.: Изд-во МГТУ им. Н.Э. Баумана, 2004. – 62 с. Рекомендуемые Интернет-сайты: 1. Иванков П.Л. Конспект лекций по математическому анализу // http://mathmod.bmstu.ru/
МАТЕМАТИЧЕСКИЙ АНАЛИЗ для студентов, обучающихся по направлению 231300 (ФН2) ЛИТЕРАТУРА Основная литература (ОЛ) 1. Морозова В.Д. Введение в анализ. – М.: Изд-во МГТУ им. Н.Э. Баумана, 2005. – 408 с. 2. Иванова Е.Е. Дифференциальное исчисление функций одного аргумента. – М.: Изд-во МГТУ им. Н.Э. Баумана, 2001. – 408 с. 3. Задачи и упражнения по математическому анализу для втузов / Под ред. Б.П. Демидовича. – М.: Астрель, 2003. – 472 с.
Дополнительная литература (ДЛ) 1. Пискунов Н.С. Дифференциальное и интегральное исчисления для втузов. Т. 1. – М.: Интеграл-Пресс, 2006. – 416 с. 2. Фихтенгольц Г.М. Курс дифференциального и интегрального исчисления. Т. 1. – М.: ФИЗМАТЛИТ, 2003. – 680 с. 3. Сборник задач по математике для втузов. Ч. 1. Линейная алгебра и основы математического анализа: Учеб. пособие для втузов / Под ред. А.В. Ефимова, Б.П. Демидовича. – М.: Наука, 1993. – 478 с. 4. Ильин В.А., Позняк Э.Г. Основы математического анализа. Ч.1. – М.: Наука, 1982. – 616 с. 5. Кудрявцев Л.Д. Курс математического анализа. Т. 1. – М.: Высш. школа, 1988. – 718 с. 6. Вся высшая математика: Учебник для втузов / М.Л. Краснов, А.И. Киселев, Г.И. Макаренко и др. Т. 1. – М.: Эдиториал УРСС, 2000. – 328 с. 7. Бугров Я.С., Никольский С.М. Дифференциальное и интегральное исчисление. – М.: Наука, 1988. – 431 с.
|
||||
Последнее изменение этой страницы: 2016-12-09; просмотров: 452; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.129.39.104 (0.005 с.) |