Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Техника безопасности в химической лаборатории↑ Стр 1 из 6Следующая ⇒ Содержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ К ВЫПОЛНЕНИЮ ЛАБОРАТОРНЫХ РАБОТ ПО ДИСЦИПЛИНЕ «ХИМИЯ»
Учебное пособие
Белгород 2015г. ОГЛАВЛЕНИЕ
ТЕХНИКА БЕЗОПАСНОСТИ В ХИМИЧЕСКОЙ ЛАБОРАТОРИИ.. 3 ХИМИЧЕСКАЯ ПОСУДА.. 10 ЛАБОРАТОРНАЯ РАБОТА №1. 15 ЛАБОРАТОРНАЯ РАБОТА № 2. 27 ЛАБОРАТОРНАЯ РАБОТА № 3. 51 ЛАБОРАТОРНАЯ РАБОТА № 4. 55 ЛАБОРАТОРНАЯ РАБОТА № 5. 62
ТЕХНИКА БЕЗОПАСНОСТИ В ХИМИЧЕСКОЙ ЛАБОРАТОРИИ Работа в химической лаборатории неизбежно связана с рядом опасных и вредных факторов. Для обеспечения безопасности людей необходимо соблюдать определенные правила. Неумелое или небрежное обращение с химическими реактивами и оборудованием может привести к несчастному случаю. Химическая лаборатория оборудована специальными рабочими столами, шкафами и полками для реактивов, посуды, растворов. Для работы с ядовитыми летучими веществами имеются вытяжные шкафы. Лаборатория снабжена водопроводом и канализацией. Мебель и оборудование располагаются так, чтобы проходы между столами и выход из лаборатории были всегда свободными для обеспечения возможности быстрой эвакуации людей в экстренных случаях. В химической лаборатории обязательно имеются средства противопожарной безопасности, а также аптечка для оказания первой помощи.
Общие правила поведения в лаборатории 1. Лабораторные работы выполняются студентами во время, предусмотренное расписанием занятий. Категорически запрещается работать в лаборатории в неустановленное время без разрешения преподавателя. 2. В лаборатории никогда нельзя работать одному. 3. Запрещается посещение студентов, работающих в лаборатории, посторонними лицами, а также отвлечение студентов посторонними работами и разговорами. 4. В лаборатории необходимо соблюдать порядок и тишину. Шум и посторонние разговоры отвлекают внимание и могут привести к ошибкам в работе. 5. Нельзя находиться в лаборатории в верхней одежде. Следует работать обязательно в халате, застегивающемся спереди, иметь при себе полотенце. Студенты без халата к выполнению работ не допускаются. 6. Категорически запрещается принимать пищу, пить воду в лаборатории. 7. Запрещается проводить какие-либо опыты, не предусмотренные программой практикума, приносить свои реактивы, выносить реактивы из лаборатории. 8. К выполнению лабораторной работы можно приступать после тщательного изучения методики и правил работы с приборами. 9. На рабочем столе должны находиться необходимые реактивы, оборудование и посуда, рабочий журнал. Поверхность стола должна быть чистой и сухой. Не следует загромождать стол посторонними предметами, ставить на него портфели, сумки и т.д. 10. Во время работы не следует спешить и суетиться. Торопливость, беспорядочность и неряшливость приводят к неудачам в работе, а иногда и к несчастным случаям. Если при выполнении работы возникают какие-либо затруднения, нужно обратиться за советом к лаборанту или преподавателю. 11. При выполнении лабораторной работы все операции необходимо выполнять над столом. 12. После окончания работы следует вымыть посуду, отключить электроприборы, выключить воду, привести в порядок рабочее место и сдать его лаборанту. Бумагу, использованные фильтры, мусор, осколки разбившейся посуды необходимо выбрасывать в мусорное ведро, ни в коем случае не в раковину. О случаях нарушения порядка (разбита посуда, испорчены реактивы и т.п.) необходимо сообщить преподавателю или лаборанту.
ХИМИЧЕСКАЯ ПОСУДА
В лаборатории используется стеклянная, фарфоровая, металлическая посуда. Наиболее часто опыты проводят в стеклянной посуде. Стеклянная химическая посуда условно делится на три группы: посуда общего назначения, мерная посуда, специальная посуда. Посуда общего назначения используется для самых разнообразных целей. Изготавливается она из обычного и термостойкого стекла. Пробирки (рис. 1) служат для проведения опытов с небольшими количествами веществ. Обычная лабораторная пробирка имеет размеры 15´150 мм и емкость около 20 мл. При проведении опыта не следует заполнять пробирку более чем на 1/3 объема. Перемешивают реактивы в пробирке легким встряхиванием, постукивая по ней. Нельзя перемешивать вещества резким встряхиванием, закрыв отверстие пробирки пальцем. Нагревают жидкость в пробирке на водяной бане или на открытом пламени, закрепив ее в пробиркодержателе. При этом нагревают не дно пробирки, а сначала верхнюю часть жидкости, затем прогревают всю пробирку. Пробирку держат отверстием от себя и от работающих рядом, чтобы в случае внезапного выброса горячей жидкости она ни на кого не попала. Химические стаканы (рис. 2) – тонкостенные сосуды цилиндрической формы. Они предназначены для выполнения различных операций – приготовления растворов, проведения некоторых химических реакций и т.д. Химические стаканы изготавливаются в соответствии с ГОСТ, емкость их бывает различной – от 50 мл до 2 л. Различаются они и по форме (высокие и низкие, с носиком и без носика). Плоскодонные и конические колбы (рис. 3) применяются для самых различных работ (приготовление растворов, фильтрование и т.д.). Небольшие конические колбы, иначе называемые колбами Эрленмейера, применяются для титрования. Емкость плоскодонных конических колб может быть различной – от 25 мл до 5 л. Изготавливают разнообразные колбы: с узким и широким горлом, с обычным цилиндрическим горлом и с отогнутыми краями, а также со специальным пришлифованным горлом. Такие колбы герметично закрываются специальными пробками стандартных размеров. Если колба изготовлена из термостойкого стекла, на ней имеется соответствующее обозначение: ТС, матовый прямоугольник или кружок. Круглодонные колбы (рис. 4) предназначены для проведения синтезов, могут использоваться при перегонке жидкостей. Они могут иметь одно, два, три, реже четыре горла стандартных размеров. Как правило, одно из них более широкое, остальные узкие. Химические воронки (рис. 5) различной емкости используются для переливания жидкостей, для фильтрования. Угол воронки чаще всего составляет 60°. Хвостовая часть воронки имеет косой срез, необходимый для того, чтобы переливаемая жидкость стекала по стенке сосуда и не разбрызгивалась. Эксикаторы (рис. 6) используются для сохранения химических веществ в сухой атмосфере. Эксикатор представляет собой толстостенный стеклянный сосуд с широкой притертой крышкой. На дно эксикатора помещают влагопоглощающее вещество, например прокаленный хлорид кальция. Сверху кладут фарфоровую решетку, на которую ставятся чашки или бюксы с веществами. Эксикатор герметично закрывается крышкой. Герметичность обеспечивается специальной смазкой, которая наносится на пришлифованные поверхности. Крышку открывают, перемещая ее в горизонтальном направлении. Эксикатор переносят, придерживая крышку. Капельницы (рис. 7) предназначены для работы с индикаторами. Мерная посуда применяется для измерения объемов жидкостей. Она калибрована, т.е. имеет метку, отмечающую определенный объем жидкости. Калибрование точной мерной посуды производят при температуре 20°С, что указывается на посуде. Отклонение температуры на ± 5°С не вызывает значительного изменения объема. Поэтому с мерной посудой работают при температуре, отличающейся в указанных пределах от той, при которой производилась калибровка. В случае необходимости делают соответствующий пересчет. Если мерная посуда, кроме метки, отмечающей общий объем, имеет еще метки, которые делят общий объем на части, то такая посуда называется градуированной. При работе с градуированной посудой необходимо установить цену деления. Мерные (измерительные) цилиндры, мензурки позволяют грубо измерить объем жидкостей. Для точного измерения предназначены мерные колбы, бюретки, пипетки. Для правильного измерения объема жидкости мерную посуду наполняют ею так, чтобы мениск касался метки, при этом глаз должен находиться на уровне метки. Уровень смачивающих стекло прозрачных жидкостей (воды, водных растворов, спирта) устанавливают по нижнему краю вогнутого мениска, а для непрозрачных и темноокрашенных – по верхнему краю. Мерные цилиндры и мензурки (рис. 8) используют при приготовлении растворов. Мензурки в отличие от мерных цилиндров имеют коническую форму. Емкость мерных цилиндров от 10 мл до 2 л, мензурок – от 50 до 500 мл. Измерение объемов жидкостей при помощи мензурок дает меньшую точность. Мерные колбы (рис. 9) предназначены для приготовления растворов точной концентрации. Это мерная посуда на наливание, они имеют одну метку на длинном узком горлышке. Мерные колбы бывают различной емкости – от 50 мл до 2 л. Они бывают с притертой пробкой и без нее. Пипетки и бюретки (рис. 10)– это мерная посуда, используемая при проведении химического анализа. Пипетки предназначены для отбора точных объемов анализируемых растворов. Бюретки используются для титрования (см. работу 1). Фарфоровая химическая посуда также довольно часто используется при выполнении химического эксперимента. Выпарная (выпарительная) чашка (рис. 11)– круглодонная тонкостенная емкость с носиком или без. Применяется для упаривания и выпаривания растворов. Ступка (рис. 12) – толстостенная фарфоровая посуда.Нижняя внешняя поверхность ступки плоская, а внутренняя – сферическая. Ступки используют для измельчения и растирания твердых веществ с помощью пестика. Тигли (рис. 13) применяются для прокаливания веществ. Они бывают различной емкости от 2 мл до 100 мл. В лаборатории также применяются фарфоровые стаканы, кружки и т.д.
ЛАБОРАТОРНАЯ РАБОТА №1 Общие понятия Раствор – гомогенная (однородная) система, состоящая из двух или более компонентов, относительные количества которых могут изменяться в широких пределах. В истинном растворе растворенные вещества равномерно распределены в виде молекул или ионов в растворителе. Обычно растворителем считают тот компонент, который в чистом виде существует в том же агрегатном состоянии, что и полученный раствор. Например, в случае раствора соли в воде растворителем является вода. Если оба компонента до образования раствора находились в одинаковом агрегатном состоянии, например жидком (спирт и вода), то растворителем чаще всего считается компонент, находящийся в растворе в относительно большем количестве. Наибольшее практическое значение имеют жидкие растворы. Растворы электролитов – это растворы диссоциирующих на ионы солей, кислот и оснований. В них растворенные вещества присутствуют в виде молекул и ионов (слабые электролиты) или только в виде ионов (сильные электролиты). Электрическая проводимость этих растворов выше, чем растворителя. Растворы неэлектролитов – это растворы веществ, не диссоциирующих в растворителе. Они практически не проводят электрический ток. Неэлектролиты в растворе диспергированы до молекул. Раствор, находящийся при данных условиях в равновесии с растворяемым веществом, называется насыщенным раствором. В нем содержится максимально возможное количество растворенного вещества при заданной температуре. Раствор, в котором при данных условиях предел растворимости не достигнут, называется ненасыщенным. Концентрация растворенного вещества в нем меньше, чем в насыщенном растворе. Раствор, в котором при данной температуре содержится большее количество растворенного вещества, чем в насыщенном растворе, называется пересыщенным. Такие системы являются метастабильными, т.е. при отсутствии внешних воздействий могут достаточно долгое время оставаться без изменений, но при введении, например, маленького кристалла растворенного вещества весь избыток его в растворе быстро выпадает в осадок, раствор переходит в устойчивое состояние и становится насыщенным.
Титриметрический анализ 3.1. Сущность титриметрического метода анализа Титриметрия (титриметрический анализ) – это количественный химический метод анализа, основанный на точном измерении объема стандартного раствора (титранта), вступающего в реакцию с определяемым веществом. Стандартным называется раствор реагента с точно известной концентрацией. Стандартный раствор добавляется из бюретки по каплям к определенному объему анализируемого раствора. Этот процесс называется титрованием. Состояние системы, когда количество добавляемого титранта эквивалентно количеству определяемого вещества, называется точкой эквивалентности, или теоретической точкой конца титрования. Для фиксирования точки эквивалентности используют различные индикаторы или инструментальные методы. Резкое изменение окраски индикатора соответствует конечной точке титрования, которая, строго говоря, не всегда совпадает с точкой эквивалентности. Титриметрия как метод анализа имеет ряд достоинств. Во-первых, этовысокая скорость и точность анализа, а также применимость для определения различных количеств веществ. Во-вторых,этим методом в одном и том же растворе часто можно определять одновременно несколько веществ. Еще одно достоинство –возможность автоматизировать титрование. В титриметрии применяются реакции, удовлетворяющие следующим требованиям. · Реакция должна протекать быстро. · Реакция должна быть стехиометрична и протекать строго по уравнению. · Она должна протекать количественно, почти до конца, т.е. константа равновесия реакции Кр ³ 108. · Основной реакции не должны мешать побочные реакции и посторонние вещества. · Должна четко фиксироваться точка эквивалентности с помощью подходящего индикатора. Вычисления в титриметрии В основе расчетов в титриметрическом анализе лежит закон эквивалентов: вещества взаимодействуют друг с другом в эквивалентных количествах. В случае реакций между растворами (титруемого вещества и титранта) его записывают следующим образом , где СН1 и СН2 – молярные концентрации эквивалента реагирующих веществ (нормальные концентрации), V1 и V2 – объемы растворов. По известным значениям объемов растворов и концентрации титранта рассчитывают молярную концентрацию эквивалента для исследуемого раствора (нормальность), а далее при необходимости можно найти молярную концентрацию, содержание определяемого вещества в г/л, массу определяемого вещества в образце и т.д. При серийных анализах удобно пользоваться титром стандартного раствора по определяемому веществу. Например, T(KMnO4/Fe2+) = 0.005585 г/мл означает, что одним миллилитром стандартного раствора KMnO4 можно оттитровать 0,005585 г ионов Fe2+. Цель работы. 1. Научиться готовить растворы с заданной массовой долей растворенного вещества (процентной концентрацией) из твердого вещества и разбавлением. 2. Освоить метод кислотно-основного титрования.
Реактивы.
Оборудование и посуда. · Бюретки. · Стаканы на 150-200 мл. · Набор ареометров. · Весы. · Цилиндры. · Пипетки на 10, 20, 25 мл. · Колбы конические для титрования на 100 или 250 мл.
Выполнение работы. Опыт №1. Приготовление раствора заданной процентной концентрации. 1.1. Приготовление раствора из твердого вещества и воды. ЛАБОРАТОРНАЯ РАБОТА № 2 Биогенные s- и р-элементы К s-элементам относятся первые два элемента каждого периода. Электронная формула внешнего слоя ns1–ns2. К ним относятся элементы главной подгруппы I группы (IА группы) – водород, щелочные металлы (Li, Na, K, Rb, Cs, Fr), а также элементы главной подгруппы II группы (IIA группы) – Be, Mg, Ca, Sr, Ba, Ra, и элемент VIIIА благородный газ гелий Не. Некоторые из них относятся к макроэлементам (H, Na, K, Ca, Mg), другие – к микроэлементам (например, Sr, Ba, Ra). Первые пять элементов являются жизненно необходимыми (незаменимыми), биогенными элементами. Остальные s-элементы (Li, Rb, Cs, Fr, Be, Sr, Ba, Ra) являются примесными элементами. К р-элементам относятся последние 6 элементов II–VI периодов (VII период не завершен). Электронная формула внешнего слоя этих элементов np1–np6. Это элементы главных подгрупп III–VIII групп (кроме гелия, он s-элемент). Из них к макроэлементам относятся O, C, N, P, S, Cl, они же являются жизненно необходимыми биогенными элементами. Большинство р-элементов относятся к примесным микроэлементам. Из микроэлементов только йод (I) относится к числу незаменимых биогенных элементов. Фтор (F) также можно считать элементом, необходимым для нормального функционирования живых организмов. Некоторые исследователи относят и селен (Se) к жизненно необходимым элементам. Группа IA (водород) Пероксид водорода – это соединение водорода, элемента IА группы, который относится к s-семейству. Пероксид водорода является важным побочным продуктом метаболизма. Обычно в митохондриях идет восстановление О2 до Н2О: О20 + 4 Н+ + 4е = 2Н2О-2. При неполном восстановлении кислорода образуется пероксид водорода: О20 + 2Н+ + 2е = Н2О2-1. Пероксид водорода, как промежуточный продукт восстановления кислорода, очень токсичен для клетки. Токсичность связана с тем, что Н2О2 взаимодействует с липидным слоем клеточных мембран и выводит их из строя. Аэробные клетки могут защитить себя от вредного действия пероксида водорода с помощью фермента каталазы, под действием которой Н2О2 превращается в воду и кислород: 2Н2О2 2Н2О + О2. Освободившийся кислород принимает участие в дальнейших процессах биологического окисления. Аналогичное разложение пероксида водорода можно осуществить в лабораторных условиях под действием MnO2 в качестве катализатора. 2Н2О2 2Н2О + О2. В медицинской практике пероксид водорода применяют в основном как наружное бактерицидное средство. Действие Н2О2 основано на окислительной способности пероксида водорода и безвредности продукта его восстановления – воды. При обработке ран выделяющийся кислород играет двоякую роль. Во-первых, он оказывает противомикробное, дезодорирующее и депигментирующее действие, убивая микробные тела. Во-вторых, образует пену, способствуя переходу частиц тканевого распада во взвешенное состояние и очищению ран. В качестве фармакопейного препарата используется 3%-ный водный раствор пероксида водорода. 6%-ный раствор Н2О2 применяют для обесцвечивания волос. В виде 30%-ного раствора Н2О2 применяют при лечении бородавчатых форм красного плоского лишая и для удаления юношеских бородавок. Группа IA и IIА Металлы IA и IIA группы относятся к s-семейству. Гидрокарбонат натрия NaHCO3 используют при различных заболеваниях, сопровождающихся повышенной кислотностью - ацидозом (диабет и др.). Механизм снижения кислотности заключается во взаимодействии NaHCO3 с кислыми продуктами. При этом образуются натриевые соли органических кислот, которые в значительной мере выводятся с мочой, и углекислый газ, покидающий организм с выдыхаемым воздухом: NaHCO3(р) + RCOOH(р) ®RCOONa(р) + Н2О(ж) + СО2(г) Используют NaHCO3 и при повышенной кислотности желудочного сока, язвенной болезни желудка и двенадцатиперстной кишки. При приеме NaHCO3 протекает реакция нейтрализации избыточной соляной кислоты: NaHCO3(р) + HCl(р) = NaCl(р) + Н2О(ж) + СО2(г) желудоч. сок Следует иметь в виду, что применение NaHCO3 вызывает ряд побочных эффектов. Выделяющийся при реакции диоксид углерода раздражает рецепторы слизистой оболочки желудка и вызывает вторичное усиление секреции, кроме того, он может способствовать перфорации стенки желудка при язвенной болезни. Слишком большая доза NaHCO3 в результате гидролиза приводит к алкалозу, что не менее вредно, чем ацидоз. Среди оксидов элементов IIА-группы в качестве лекарственного препарата применяют оксид магния MgO. Основные свойства оксида магния и его нерастворимость в воде обуславливают его применение в качестве антацидного средства при повышенной кислотности желудочного сока: MgO(тв.) + 2HCl(желудоч. сок) = MgCl2(р) + Н2О(ж) Оксид магния имеет преимущество перед гидрокарбонатом натрия, так как при взаимодействии MgO с кислотой желудочного сока не происходит выделение диоксида углерода. Поэтому при действии оксида магния не наблюдается гиперсекреции. Образующийся при реакции хлорид магния переходит в кишечник, оказывает легкий послабляющий эффект, обусловленный осмотическим действием. Антацидным и адсорбирующим действием обладает карбонат кальция СаСО3. Его назначают внутрь при повышенной кислотности желудка, так как он нейтрализует соляную кислоту: СаСО3(тв.) + 2HCl (желудоч. сок) = CaCl2(р) + Н2О(ж) + СО2(г).
Жесткость воды Растворимые соли Са и Mg обуславливают важное свойство природной воды, называемое жесткостью (суммарное содержание солей кальция и магния). Определение жесткости воды имеет большое практическое значение и широкое применение в лабораторной практике различных производств. При стирке белья жесткая вода ухудшает качество тканей и требует повышенной затраты мыла, которое расходуется на связывание катионов Са2+ и Mg2+: 2С17Н35СОО– + Са2+ = (С17Н35СОО)2Са¯ 2С17Н35СОО– + Mg2+ = (С17Н35СОО)2Mg¯. Пена образуется лишь после полного осаждения этих катионов. Правда, некоторые синтетические моющие средства хорошо моют и в жесткой воде, так как их кальциевые и магниевые соли легко растворяются. В жесткой воде плохо развариваются овощи. Очень плохо заваривается чай, и вкус его теряется. В то же время в санитарно-гигиеническом отношении эти катионы не представляют опасности, хотя при большом содержании катионов магния Mg2+ (как в море или океане) вода горьковата на вкус и оказывает послабляющее действие на кишечник человека. Однако использование жесткой воды в качестве питьевой способствует возникновению мочекаменной и желчекаменной болезней (образованию камней). Различают жесткость временную (или устранимую) и постоянную. Временная жесткость обусловлена присутствием в воде гидрокарбонатов Ca(HCO3)2, реже Mg(HCO3)2 и иногда Fe(HCO3)2. Постоянная жесткость обусловлена присутствием других растворимых солей этих металлов (хлоридов, сульфатов и др.). При кипячении воды гидрокарбонаты разлагаются с образованием труднорастворимых соединений, выпадающих в осадок, и жесткость уменьшается. Ca(HCO3)2® CaCO3¯ + H2O + CO2 Ca2+ + 2HCO3-® CaCO3¯ + H2O + CO2 2Mg(HCO3)2® (MgOH)2CO3¯ + H2O + 3CO2 2Mg2+ + 2HCO32- ® (MgOH)2CO3¯ + H2O + 3CO2. Сохраняющаяся после кипячения воды жесткость, называется постоянной (некарбонатной). В соответствии с ГОСТ 6055-86 по значению общей жесткости (ммоль/л) различают воду: очень мягкую <1,5, мягкую 1,5–3,0, средней жесткости 3,0–6,0, жесткую 6,0–9,0, очень жесткую > 9,0. Жесткость воды хозяйственно-питьевых водопроводов не должна превышать 7 ммоль/л. Для определения жесткости воды применяют титриметрический метод (см. лабораторную работу №1). В даннойработе методом кислотно-основного титрования (метод нейтрализации) определяется временная (гидрокарбонатная) жесткость воды. Гидрокарбонаты кальция и магния титруют соляной кислотой в присутствии индикатора. Ca(HCO3)2 + 2НCl®CaCl2 + 2H2O +2CO2 HCO3– + Н+®H2O +CO2
Группа IIIA (алюминий) По содержанию в организме человека алюминий относится к примесным микроэлементам (10–5 %). Известно, что алюминий влияет на развитие эпителиальной и соединительной тканей, на регенерацию костной ткани, на обмен фосфора. Катион Al3+ способен замещать ионы Ca2+ и Mg2+, влияя тем самым на протекание ферментативных процессов. Избыток алюминия в организме тормозит синтез гемоглобина, так как благодаря довольно высокой способности к комплексообразованию ионы алюминия блокируют активные центры ферментов, участвующих в кроветворении. Алюминий – амфотерный металл, растворяется в растворах кислот и в щелочах. Амфотерными свойствами обладают оксид (Al2O3) и гидроксид алюминия (Al(OH)3). Соли алюминия и кислородсодержащих кислот растворимы в воде, за исключением фосфата алюминия AlPO4. Это следует учитывать при назначении препаратов алюминия, в частности гидроксида алюминия при повышенной кислотности желудка. В желудке гидроксид алюминия нейтрализует соляную кислоту Al(OH)3 + 3HCl = AlCl3 + 3H2O Al(OH)3 + 3H+ = Al3+ + 3H2O Перешедшие в раствор ионы алюминия в кишечнике переходят в малорастворимую форму – фосфат алюминия, который выводится из организма. Таким образом, в присутствии ионов алюминия уменьшается усвоение фосфора. В медицинской практике также находят применение алюмокалиевые квасцы (KAl(SO4)2∙12H2O) и жженые квасцы (KAl(SO4)2). Эти соединения используются для наружного применения для полосканий, промываний, примочек при воспалительных заболеваниях кожи и слизистых, как кровоостанавливающее средство при порезах. Фармакологическое действие солей алюминия основано на том, что ионы Al3+ образуют с белками комплексы, выпадающие в виде гелей, что приводит к гибели микробных клеток. Группа VA (азот) Опыт 6. Получение и свойства аммиака Азот (N) – элемент VА группы (р-элемент). Из соединений азота, в которых он проявляет степень окисления –3, наибольший интерес для медиков и биологов представляет аммиак NH3 и его производные – соли аммония и аминокислоты. Аммиак NH3 в организме человека является одним из продуктов метаболизма аминокислот и белков. Причина токсического действия аммиака на мозг до конца не выяснена. В крови при рН = 7,4 аммиак почти полностью находится в виде ионов аммония. Ионы NH4+, несмотря на то, что они в крови находятся в большом избытке, не могут проникать через клеточные мембраны, в то время как нейтральные молекулы NH3 легко проходят и могут воздействовать на мозг. NH3 – бесцветный газ с резким запахом, очень хорошо растворим в воде: в 1 объеме воды при 20°С растворяется около 700 объемов аммиака (растворимость 31 моль/л). В концентрированном водном растворе массовая доля аммиака составляет 25%. В медицинской практике применяют 10%-ный раствор аммиака (нашатырный спирт) для выведения из обморочного состояния. При вдыхании аммиак оказывает возбуждающее влияние на дыхательный центр. При больших дозах наступает удушье. Группа VIA (кислород) Кислород – важнейший биогенный элемент, находится в VIА группе (р-элемент). В атмосфере Земли содержится около 21% кислорода (по объему). В промышленности кислород получают из жидкого воздуха путем ректификации – дробной перегонки, основанной на различии температур кипения кислорода (–183°С) и азота (–195,8°С). В лабораториях пользуются кислородом промышленного производства, поставляемым в стальных баллонах под давлением 15 МПа. Лабораторным способом его получения служит электролиз водных растворов щелочей. Небольшие количества О2 можно получать взаимодействием раствора KMnO4с подкисленным раствором Н2О2 (см. опыт 4.2 в работе 8) или термическим разложением некоторых кислородсодержащих веществ, например, перманганата калия: 2KMnO4 = K2MnO4 + MnO2 + O2. Велика биологическая роль кислорода. Элемент кислород входит в состав всех жизненно важных органических веществ – белков, жиров, углеводов. Без О2 невозможны чрезвычайно важные жизненные процессы: дыхание, окисление аминокислот, жиров, углеводов. Только немногие растения, называемые анаэробными,могут обходиться без кислорода. За сутки человек фактически использует около 0,1 м3 кислорода. У высших животных О2 проникает в кровь, соединяется с гемоглобином, образуя оксигемоглобин, который поступает в капилляры различных органов. Здесь О2 отщепляется от гемоглобина и через стенки капилляров диффундирует в ткани. В тканях кислород расходуется на окисление различных веществ. Эти реакции в конечном итоге приводят к образованию углекислого газа, воды и созданию запаса энергии. Регенерация кислорода осуществляется в растениях в результате фотосинтеза. Кислород используют в медицине при затрудненном дыхании. В последние годы при лечении газовой гангрены и ряда других заболеваний, при которых накапливаются микробы в омертвевших тканях, применяют гипербарическуюоксигенацию, т.е. помещают больных в барокамеры с повышенным давлением кислорода в воздухе. При этом улучшается снабжение тканей кислородом, и во многих случаях такой способ лечения дает хорошие результаты. Группа VIIA (йод) Йод (I) находится в VIIА группе, относится к р-элементам. Он относится к числу незаменимых биогенных элементов, и его соединения играют важную роль в процессах обмена веществ. Имеются данные, что йод влияет на синтез некоторых белков, жиров и гормонов. В организме человека содержится около 25 мг йода, из них больше половины находится в щитовидной железе, причем в связанном состоянии – в виде гормонов – и только около 1% его находится в виде иодид-иона. Щитовидная железа секретирует иод-содержащие гормоны тироксин и трииодтиронин. Пониженная активность щитовидной железы (гипотиреоз) может быть связана с уменьшением ее способности накапливать иодид-ионы, а также с недостатком в пище иода (эндемический зоб). При эндемическом зобе назначают препараты иода: KJ или NaJ. В районах, где имеется дефицит иода, для профилактики эндемического зоба добавляют к поваренной соли NaJ или KJ (1-2,5 г на 100 кг). При повышенной активности щитовидной железы (гипертиреоз) вследствие избыточного синтеза тиреоидных гормонов наблюдается ненормально увеличенная скорость метаболических процессов. KJ применяют и при гипотиреозе (эндемический зоб), и при гипертиреозе. В первом случае иодид-ионы используют для синтеза гормонов, во втором случае иодид-ион тормозит иодирование тирозина иодом. При неэффективности указанных препаратов для лечения гипертиреоза применяют препарат радиоактивного иодаJ-131, излучение которого разрушает фолликулы щитовидной железы и уменьшает избыточный синтез гормонов. NaJ и KJ используют также как отхаркивающее средство при воспалительных заболеваниях дыхательных путей. Иод применяют в медицине в виде раствора в этиловом спирте (массовая доля иода 3, 5 или 10%), который является превосходным антисептическим и кровоостанавливающим средством. Кроме того, йод входит в состав ряда фармацевтических препаратов. D-элементы По содержанию в организме человека d-элементы относятся к микроэлементам (10–3 масс. % и ниже). Среди них есть жизненно необходимые (незаменимые) элементы – это Mn, Cu, Co, Fe, Zn, Mo, V (по классификации В.В. Ковальского). Другие, такие как, Cd, Cr, Ni, Ag, Hg и другие, относятся к примесным элементам, биологическая роль которых мало выяснена или неизвестна. Шесть d-элементов (Fe, Zn, Cu, Mn, Mo, Co) наряду с четырьмя s-элементами (Ca, K, Na, Mg) относятся к металлам жизни. У d-элементов сильно выражена способность к комплексообразованию (слово «комплексные» означает сложные, составные). Комплексные соединения - ярко окрашенные солеобразные вещества были известны химикам еще в XVIII веке. Одними из первых были открыты комплексные соли железа и кобальта. Многие биокатализаторы – ферменты также являются комплексными соединениями. Изучением их занимается бионеорганическая химия. Рассмотрим образование комплексной соли на конкретном примере. Если к голубому водному раствору CuSO4 прибавить раствор аммиакаNH3, то при этом раствор приобретает красивый ярко-синий цвет. Происходит реакция образования комплексной соли [Cu(NH3)4]SO4: CuSO4 + 4NH3 → CuSO4×4NH3 Строение комплексных соединений объясняет теория А. Вернера. В молекулах комплексных соединений выделяют центральный атом или ион (М) и непосредственно связанные с ним молекулы (или ионы), называемые лигандами (L), в количестве n. Центральный ион и окружающие его лиганды образуют внутреннюю сферу комплекса [MLn]. Внутренняя сфера связана электростатическими силами притяжения с внешней сферой, которая состоит из m частиц Х (молекулы или ионы). Общая запись формулы комплексного соединения имеет вид [MLn]Xm. Центральный атом координирует лиганды, геометрически правильно располагая их в пространстве. Поэтому комплексные соединения называют также координационными. Число лигандовn называется координационным числом, а внутренняя сфера – координационной. В соответствии с этим формулу комплексного соединения меди с аммиаком можно записать в виде [Cu(NH3)4]SO4, где ион меди Cu2+ – центральный ион; молекулы NH3 – лиганды; 4 – координационное число; сульфат анион SO42- – внешняя сфера. Называется данная соль сульфат тетраамминмеди (II). Комплексные соли диссоциируют на внутреннюю и внешнюю сферу по типу сильных электролитов: [Cu(NH3)4]SO4«[Cu(NH3)4]2+ + SO42-. Образующийся комплексный ион [Cu(NH3)4]2+диссоциирует как очень слабый электролит: [Cu(NH3)4]2+«Cu2+ + 4NH3. Концентрация образующихся ионов Cu2+ очень мала. Константа равновесия этого процесса называется константой нестойкости комплексного иона (комплекса):
|
Познавательные статьи:
Последнее изменение этой страницы: 2016-12-10; просмотров: 1340; Нарушение авторского права страницы; Мы поможем в написании вашей работы!
infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.137.200.56 (0.012 с.)