Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Определение фактора эквивалентности.

Поиск

В этом посте рассмотрим два важных понятия, без которых понимание темы «Химический эквивалент» будет неполным: f – фактор эквивалентности и z – эквивалентное число.

Определение фактора эквивалентности и эквивалентного числа проводится только для конкретной ситуации. На схеме показаны такие ситуации.ры, казано числа эквивалентности

Если вспомнить сопоставление стоимости товара с химической частицей, о котором шла речь здесь, то фактор эквивалентности будет показывать долю «товара» (долю реальной частицы), которая соответствует одному рублю (иону водорода или электрону).

Определение фактора эквивалентности связано с нахождением числа эквивалентности z. Они являются обратнозависимыми величинами.

f = 1/ z

Смысл числа эквивалентности заключается в том, что оно показывает сколько эквивалентов содержится в одной частице вещества. Или иначе говоря показывает «сколько рублей стоит тот или иной товар»

Разберем все сказанное выше на примерах.

Taк, для реакции полной нейтрализации эквивалент серной кислоты Э (H2S04) = 1/2 H2S04, т. e. эквивалентное число z = 2, a фактор эквивалентности f = 1/2.

Рассмотрим несколько наиболее распространенных химических реакций. B реакции:

OH-+ H+ = H2O

c одним ионом водорода реагирует один гидроксид-ион, следовательно, Э (OH-) = OH-. Реакцию нейтрализации можно записать в молекулярном виде:

Ca(OH)2 + 2HCl = CaCl2 + 2H20

или в ионном:

Ca2+ + 2OH- +2H+ +2Cl- = Ca2+ +2Cl- + 2H20

В ионном уравнении сразу видно, что одному иону водорода соответствует 1/2 Ca2+, 1 OH-, 1 Cl-, т. e. ион водорода эквивалентен 1/2 иона кальция одному гидроксид-иону, одному иону хлора. Следовательно,

Э (Ca2+) = 1/2 Ca2+, Э (CI-) = CI-, Э (OH-) = OH-.

Попробуем записать уравнение этой реакции относительно одного иона водорода, тогда в уравнении реакции четко видно факторы эквивалентности:

1/2 Ca(OH)2 + HCI = 1/2 CaCl2+ H20

Если таким образом проанализировать различные уравнения реакций нейтрализации, то можно увидеть общие закономерности: для кислот эквивалентное число равно числу замещаемых в конкретной реакции ионов водорода, a для оснований – числу замещаемых гидроксид-ионов.

Для реакций, в которых принимают участие соли, определение фактора эквивалентности и эквивалентов можно определить косвенными методами, например:

AIC13 + 3 AgN03 = AI(N03)3 + 3AgC1.

Чтобы определить эквиваленты A1C13 и AgN03, введем вспомогательные реакции:

AlCl3 + 3HN03 = 3HCI + AI(N03)3

3AgN03 + 3HCI = 3AgC1 + 3HN03

AICI3 + 3AgN03 = AI(N03)3 + 3AgCl

Одному иону водорода эквивалентна 1/3 молекулы AICI3 x молекула AgN03, следовательно, Э(A1C13) = 1/3AICI3, a Э(AgN03)= AgN03.

Рассмотрев несколько реакций c участием солей, мы убедимся, что эквивалентное число для соли равно произведению количества замещаемых ионов металла на заряд катиона или произведению числа замещаемых анионов кислотных остатков на их заряд.

Теперь перейдем к окислительно-восстановительным процессам.

Cu2+ + 2e = Cu0.

B этом случае c одним ионом меди взаимодействуют два электрона, следовательно,

Э(Cu2+)=1/2Cu2+

Эквивалентное число для иона меди равно числу отдаваемых электронов. B общем случае эквивалентное число в окислительно-восстановительных реакциях определяется числом электронов, которые отдает одна частица восстановителя или принимает одна частица окислителя. Например, рассмотрим реакцию:

K2Cr207 + 14HC1 = 2CrCl3 + 7H20 + + 2KCI + 3Cl2;

Cr2072- + 14H+ + 6CI- = 2Cr3+ + 3CI2 + 7H20

Cr2072- + 14H++ 6e = 2Cr3++ 7H20

2C1- – 2e = CI2

По количеству электронов, участвующих в соответствующих полуреакциях, находим эквивалентные числа: z(Cr2072-) = 6; z(Cr3+) = 3; z(Cl-) = 1; z(C12) = 2.

A теперь определяем эквиваленты: Э(Cr2072-) = 1/6Cr2072-; Э(Cr3+) = 1/3Cr3+; Э(CI-) = Cl-; Э(Cl2) = 1/2Cl2.

Для веществ, в состав которых входят указанные ионы можем записать: Э(K2Cr207) = 1/6K2Cr207; Э(CrCl3) = 1/3CrC13; Э(HCl) = HCI.

 


Задача 3.

По заданному условию для газа определите все остальные его параметры (незаполненные графы). Привести все расчеты, ответ представить в виде фрагмента данной таблицы.

 

Вариант Газ Масса, г Объем, л Абсолютная масса одной молекулы Количество вещества, моль Число молекул
При p=100 кПа При н.у.
  O2            
  H2            
  Cl2            
  CH4            
  F2           3∙1023
  SO2         0,1  
  H2S           1∙1023
  Cl2O            
  NO            
  N2O         0,5  
  NO2           1,5∙1023
  PH3   2,41        
  CO         0,2  
  CO2   6,02        
  N2            
  C2H6     0,5      
  H2         1,5  
  C3H8           0,6∙1020
  NH3   4,82        
  C2H2            
  C4H10     1,5    
  Ar            
  He           0,5∙1023
  HCl   1,205        
  C2H4            

 

 

PV=(m/M)*RT –ур-е Менделеева –Клапейрона

 

Количество молей = число частиц/ NA=m/M

 

PV/T=P1V1/T1

1 моль в-ва =молек.массе в-ва - содержит 6,02*1023 частиц (число Авогадро, NA)

 

Для определения массы молекулы m 0 нужно разделить массу m вещества на число N молекул в нем:

. (23.5)

Таким образом, чтобы найти массу молекулы вещества, нужно знать молярную массу вещества M и постоянную Авогадро N A. Молярная масса вещества обычно определяется химическими методами, постоянная Авогадро с высокой степенью точности определена несколькими физическими методами.

 

 

МОЛЬ - это КОЛИЧЕСТВО ВЕЩЕСТВА, равное 6,02.1023 структурных единиц данного вещества – молекул (если вещество состоит из молекул), атомов (если это атомарное вещество), ионов (если вещество является ионным соединением).

Примеры:

1 моль (1 М) воды = 6 . 1023 молекул Н2О,

1 моль (1 М) железа = 6 . 1023 атомов Fe,

1 моль (1 М) хлора = 6 . 1023 молекул Cl2,

1 моль (1 М) ионов хлора Cl- = 6 . 1023 ионов Cl-.

1 моль (1 М) электронов е- = 6 . 1023 электронов е-.

Теперь мы имеем удобную единицу количества вещества моль, с помощью которой легко отмерять равные порции молекул или атомов простым взвешиванием.

Разумеется, если мы увеличим или уменьшим взятое нами количество воды (18 г) и оксида кальция (56 г) в одинаковое количество раз, то и порции реагирующих молекул уменьшатся или возрастут во столько же раз.

Допустим, 1,8 г воды полностью прореагируют с 5,6 г СаО, а 180 г Н2О тоже без остатка прореагируют с 560 г СаО. Другими словами 0,1 моль воды прореагирует с 0,1 моль СаО, а 10 моль воды прореагируют с 10 моль СаО и т.д.

Как мы видим, масса одного моля какого-нибудь вещества (в граммах) числено совпадает с молекулярной или атомной массой этого вещества (в а.е.м. или в безразмерном выражении - как в случае относительной атомной или молекулярной массы). Это очень удобно для химических расчетов.

Например, молекулярная масса (молекулярный вес) метана CH4 составляет (12 + 4) = 16 а.е.м. Тогда для реакции горения метана:

CH4 + 2O2 = CO2 + 2H2O

справедливо, что из 1 моля метана получаются 2 моля воды и что из 16 г метана получается 2 . 18 = 36 г воды.

Масса одного моля вещества называется МОЛЯРНОЙ МАССОЙ. Она бозначается буквой М и имеет размерность г/моль. Количество молей вещества n находят из отношения массы m этого вещества (г) к его молярной массе М (г/моль).

Например, число молей в m г воды составляет: n = m /18. Для m г металлического натрия: n = m /23, и так далее.

И наоборот, массу вещества определяют как произведение молярной массы на количество вещества: m = n . M. Так, масса 0,1 моля Na составляет 0,1 моль×23 г/моль = 2,3 г.

Молярная масса численно всегда совпадает с молекулярной массой (или атомной массой - если вещество состоит не из молекул, а из атомов). В таблице 5-1 для иллюстрации приведены молярные массы М для нескольких веществ разного строения.

Таблица 5-1. Молярные массы различных веществ.

Вещество Молекулярная или атомная масса (округлена) молярная масса М
Вода Н2О 18 а.е.м 18 г/моль
СаО 56 а.е.м. 56 г/моль
Углерод 12С 12 а.е.м. 12 г/моль
Медь Cu 63,5 a.e.м. 63,5 г/моль
Атом хлора Сl 35,5 а.е.м. 35,5 г/моль *)
Ион хлора Cl 35,5 а.е.м 35,5 г/моль
Молекула хлора Cl2 71 а.е.м 71 г/моль *)

*) Атомарный хлор и молекулярный хлор - разные вещества, обладающие разными физическими и химическими свойствами.

Как мы видим, термины "молекулярная масса" и "молярная масса" применимы не только к веществам молекулярного строения, но и к атомарным и ионным веществам. В таблице 5-1 каждая из указанных в правой колонке “порций” вещества содержит 6,02×1023 структурных единиц этих веществ.

Молярная масса Мпостоянная величина для каждого конкретного вещества. Без неё не обойтись при вычислении количества молей (n). Однако в дальнейшем для нас основным рабочим инструментом будет именно МОЛЬ вещества.

 

 

http://av-physics.narod.ru/molecule/molecule-mass.htm


Задача 4.

Рассчитайте: а) массовую долю растворенного вещества; б) молярную концентрацию; в) молярную концентрацию эквивалента; г) титр; д) мольную долю растворенного вещества растворов, полученных при растворении веществ в воде.

 

Вариант Растворенное вещество Объем воды, мл Плотность раствора, г/мл
формула масса
  H3PO4     1,036
  KOH     1,280
  HNO3     1,210
  H2SO4     1,037
  NaOH     1,090
  HCl     1,100
  H3PO4     1,113
  KOH     1,137
  HNO3     1,090
  H2SO4     1,120
  NaOH     1,250
  HCl     1,050
  H3PO4     1,210
  KOH     1,220
  HNO3     1,070
  H2SO4     1,350
  NaOH     1,430
  HCl     1,150
  H3PO4     1,181
  KOH     1,050
  HNO3     1,370
  H2SO4     1,037
  NaOH     1,055
  HCl     1,075
  H3PO4     1,028

 

Плотность воды = 0,998 г/см3=1г/см3

Массовая доля

Массовая доля — отношение массы растворённого вещества к массе раствора. Массовая доля измеряется в долях единицы или в процентах.

,

где:

  • m1 — масса растворённого вещества, г;
  • m — общая масса раствора, г.

Массовое процентное содержание компонента, m%

m%=(mi/Σmi)*100

В бинарных растворах часто существует однозначная (функциональная) зависимость между плотностью раствора и его концентрацией (при данной температуре). Это даёт возможность определять на практике концентрации важных растворов с помощью денсиметра (спиртометра, сахариметра, лактометра). Некоторые ареометры проградуированы не в значениях плотности, а непосредственно концентрации раствора (спирта, жира в молоке, сахара). Следует учитывать, что для некоторых веществ кривая плотности раствора имеет максимум, в этом случае проводят 2 измерения: непосредственное, и при небольшом разбавлении раствора.

Часто для выражения концентрации (например, серной кислоты в электролите аккумуляторных батарей) пользуются просто их плотностью. Распространены ареометры (денсиметры, плотномеры), предназначенные для определения концентрации растворов веществ.

Пример. Зависимость плотности растворов H2SO4 от её массовой доли в водном растворе при 25 °C[ источник не указан 174 дня ]
ω, %                        
ρ H2SO4, г/мл 1,032 1,066 1,102 1,139 1,219 1,303 1,395 1,498 1,611 1,727 1,814 1,834

[править] Объёмная доля

Основная статья: Объёмная доля

Объёмная доля — отношение объёма растворённого вещества к объёму раствора. Объёмная доля измеряется в долях единицы или в процентах.

,

где:

  • V1 — объём растворённого вещества, л;
  • V — общий объём раствора, л.

Как и было указано выше, существуют ареометры, предназначенные для определения концентрации растворов определённых веществ. Такие ареометры проградуированы не в значениях плотности, а непосредственно концентрации раствора. Для распространённых растворов этилового спирта, концентрация которых обычно выражается в объёмных процентах, такие ареометры получили название спиртомеров или андрометров.

[править] Молярность (молярная объёмная концентрация)

Молярная концентрация — количество растворённого вещества (число молей) в единице объёма раствора. Молярная концентрация в системе СИ измеряется в моль/м³, однако на практике её гораздо чаще выражают в моль/л или ммоль/л. Также распространено выражение в «молярности». Возможно другое обозначение молярной концентрации , которое принято обозначать М. Так, раствор с концентрацией 0,5 моль/л называют 0,5-молярным. Примечание: единица «моль» не склоняется по падежам. После цифры пишут «моль», подобно тому, как после цифры пишут «см», «кг» и т. д.

,

где:

  • ν — количество растворённого вещества, моль;
  • V — общий объём раствора, л.

[править] Нормальная концентрация (мольная концентрация эквивалента, или просто «нормальность»)

Нормальная концентрация — количество эквивалентов данного вещества в 1 литре раствора. Нормальную концентрацию выражают в моль-экв/л или г-экв/л (имеется в виду моль эквивалентов). Для записи концентрации таких растворов используют сокращения «н» или «N». Например, раствор содержащий 0,1 моль-экв/л, называют децинормальным и записывают как 0,1 н.

,

где:

  • ν — количество растворённого вещества, моль;
  • V — общий объём раствора, л;
  • z — число эквивалентности (фактор эквивалентности ).

Нормальная концентрация может отличаться в зависимости от реакции, в которой участвует вещество. Например, одномолярный раствор H2SO4 будет однонормальным, если он предназначается для реакции со щёлочью с образованием гидросульфата калия KHSO4, и двухнормальным в реакции с образованием K2SO4.

[править] Мольная (молярная) доля

Мольная доля — отношение количества молей данного компонента к общему количеству молей всех компонентов. Мольную долю выражают в долях единицы.

,

где:

  • νi — количество i -го компонента, моль;
  • n — число компонентов;

[править] Моляльность (молярная весовая концентрация, моляльная концентрация)

Моляльность — количество растворённого вещества (число молей) в 1000 г растворителя. Измеряется в молях на кг, также распространено выражение в «моляльности». Так, раствор с концентрацией 0,5 моль/кг называют 0,5-мольным.

,

где:

  • ν — количество растворённого вещества, моль;
  • m2 — масса растворителя, кг.

Следует обратить особое внимание, что несмотря на сходство названий, молярная концентрация и моляльность — величины различные. Прежде всего, в отличие от молярной концентрации, при выражении концентрации в моляльности расчёт ведут на массу растворителя, а не на объём раствора. Моляльность, в отличие от молярной концентрации, не зависит от температуры.

[править] Титр раствора

Основная статья: Титр раствора

Титр раствора — масса растворённого вещества в 1 мл раствора.

,

где:

  • m1 — масса растворённого вещества, г;
  • V — общий объём раствора, мл;

В аналитической химии обычно концентрацию титранта пересчитывают применительно к конкретной реакции титрования таким образом, чтобы объём использованного титранта непосредственного показывал массу определяемого вещества; то есть титр раствора показывает, какой массе определяемого вещества (в граммах) соответствует 1 мл титрованного раствора.

 

 

Молярная концентрация С (моль/м3, моль/дм3 = моль/л) - это отношение формульного количества растворенного вещества n к объему раствора V(p):

C = n
-----
V(p)

Молярность раствора - величина, численно равная молярной концентрации растворенного вещества, выраженной в моль/л. Молярная концентрация записывается как числовое значение с последующей буквой M или словом "молярный": 0,1M = 0,1 молярный раствор.

Эквивалентная концентрация Сeq (моль/м3, моль/дм3 = моль/л) - это отношение эквивалентного количества растворенного вещества neq к объему раствора V(p):

Ceq = neq
-----
V(p)

Нормальность раствора - величина, численно равная эквивалентной концентрации растворенного вещества, выраженной в моль/л. Нормальность раствора в расчетных формулах обозначается символом N, а числовое значение нормальности приныто указывать числовым значением эквивалентной концентрации растворенного вещества выраженной в моль/л.
Поскольку эквивалентное и формульное количества вещества связаны отношением neq = n/feq, то эквивалентную концентрацию растворенного вещества Сeq можно представить как отношение молярной концентрации С к фактору эквивалентности feq этого вещества в данной конкретной реакции:

Ceq = С
-----
feq

Следует особо подчеркнуть, что молярность раствора данного вещества определяется методикой приготовления раствора (количеством растворенного вещества и растворителя) и не зависит от реакции, в которой это вещество участвует. Наоборот, нормальность раствора зависит от реакции, т.к. одно и тоже вещество, в различных реакциях может иметь разные значения эквивалентного числа. Нельзя приготовить раствор вещества заданной нормальности, не зная, в какой реакции это вещество будет участвовать, ибо это не даст возможности рассчитать требуемое формульное количество вещества.

Моляльная концентрация Cml (моль/кг) - это отношение количества растворенного вещества n к массе растворителя msol:

Cml = n
-----
msol

Моляльная концентрация не зависит от температуры раствора, т.к. масса раствора при различных температурах остается постоянной; а объем раствора, изменяется с изменением его температуры.
Обратите внимание, на то, что несмотря на созвучность в названиях: молярная и моляльная - это различные способы выражения концентрации растворенного вещества в растворе.

Титр раствора T (г/мл) - это отношение массы растворенного вещества ms к объему раствора V(p):

T = ms
-----
V(p)

Единицей объема служит 1 мл раствора. Титр применяется в объемном методе химического анализа. В практике анилитической химии, концентрацию титранта расчитывают относительно конкретной реакции титрования таким образом, чтобы объем использованного титранта показывал массу определяемого вещества. Такой способ выражения концентрации раствора сокращает время обработки результатов химического анализа.

Мольная доля (молярная доля) Xj - это отношение количества растворенного вещества к общему количеству всех компонентов составляющих раствор (сумма количеств растворенных веществ и количества растворителя).

Xj = nj
-----
∑ni

Для объемного анализа важным является следующее положение:



Поделиться:


Последнее изменение этой страницы: 2016-12-10; просмотров: 666; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.117.104.132 (0.01 с.)