Принципы радиосвязи. Законы распространения радиоволн. Зоны Френеля. Эффект Допплера. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Принципы радиосвязи. Законы распространения радиоволн. Зоны Френеля. Эффект Допплера.

Поиск

Радиоволны: электромагнитные волны, частоты которых произвольно ограничены частотами ниже 3000 ГГц, распространяющиеся в пространстве без искусственного волновода. Радиосвязь: Электросвязь, осуществляемая посредством радиоволн (КОНВ). Уверенным приемом называют прием сигналов с необходимым качеством от конкретного передатчика независимо от погоды, состояния солнечной активности, времени суток и года, температуры и влажности воздуха, а также других факторов. Структурная схема радиосистемы:

Электромагнитные волны:

Направления электрического E и магнитного H полей в пространственной бегущей электромагнитной волне лежат в плоскости, перпендикулярной направлению движения волны. Направления полей соответствуют «правилу буравчика»: при повороте от вектора Е, расположенного вертикально (ось Z) к вектору H, лежащему в горизонтальной плоскости (ось Y) продвижение буравчика совпадает с направлением распространения волны (вдоль оси X). На рис электрическая составляющая поля во все моменты остается в вертикальной плоскости. Пространственная ориентация этой составляющей служит признаком свойства волн, называемого поляризацией. Волна, показанная в данном примере, называется вертикально поляризованной. В зависимости от способа получения волн, поляризация может быть также горизонтальной или наклонной. Если в процессе распространения волн поляризация не изменяется, то она называется линейной. Длина́ волны́ — расстояние между двумя ближайшими друг к другу точками, колеблющимися в одинаковых фазах. Измеряется в единицах расстояния. Величина обратная длине волны, называется волновым числом и имеет смысл пространственной частоты. Получить соотношение, связывающее длину волны с фазовой скоростью (c) и частотой(f) можно из определения. Длина волны соответствует пространственному периоду волны, то есть расстоянию, которое точка с постоянной фазой проходит за время, равное периоду колебаний T, поэтому

В вакууме с = 3*108 м/сек – скорость света

Распространение радиоволн подчиняется определенным общим законам:

1. Прямолинейное распространение в однородной среде, т.е. среде, свойства которой во всех точках одинаковы.

2. Отражение и преломление при переходе из одной среды в другую. Угол падения равен углу отражения.

3. Дифракция. Встречая на своем пути непрозрачное тело, радиоволны огибают его. Дифракция проявляется в разной мере в зависимости от соотношения геометрических размеров препятствия и длины волны.

4. Рефракция. В неоднородных средах, свойства которых плавно изменяются от точки к точке, радиоволны распространяются по криволинейным траекториям. Чем резче изменяются свойства среды, тем больше кривизна траектории.

5. Полное внутреннее отражение. Если при переходе из оптически более плотной среды в менее плотную, угол падения превышает некоторые критические значения, то луч во вторую среду не проникает и полностью отражается от границы раздела сред. Критический угол падения называют углом полного внутреннего отражения.

6. Интерференция. Это явление наблюдается при сложении в пространстве нескольких волн. В различных точках пространства получается увеличение или уменьшение амплитуды результирующей волны в зависимости от соотношения фаз складывающихся волн.

 

Зоны Френеля, участки, на которые можно разбить поверхность световой (или звуковой) волны для вычисления результатов дифракции света (или звука). Пусть от светящейся точки Q распространяется сферическая волна и требуется определить характеристики волнового процесса, вызванного ею в точке Р. Разделим поверхность волны S на кольцевые зоны; для этого проведём из точки Р сферы радиусами PO, Pa = PO + l/2; Pb = Pa + l/2, Pc = Pb + l/2, (О — точка пересечения поверхности волны с линией PQ; l — длина световой волны). Кольцеобразные участки поверхности волны, «вырезаемые» из неё этими сферами, и называется З. Ф. Волновой процесс в точке Р можно рассматривать как результат сложения колебаний, вызываемых в этой точке каждой З. Ф. в отдельности.

Амплитуда таких колебаний медленно убывает с возрастанием номера зоны (отсчитываемого от точки О), а фазы колебаний, вызываемых в Р смежными зонами, противоположны. Поэтому волны, приходящие в Р от двух смежных зон, гасят друг друга, а действие зон, следующих через одну, складывается. Если волна распространяется, не встречая препятствий, то её действие (сумма воздействий всех З. Ф.) эквивалентно действию половины первой зоны. Если же при помощи экрана с прозрачными концентрическими участками выделить части волны, соответствующие, например, N нечётным зонам Френеля, то действие всех выделенных зон сложится и амплитуда колебаний Uнечёт в точке Р возрастёт в 2N раз, а интенсивность света в 4N2 раз, причём освещённость в точках, окружающих Р, уменьшится. Метод З. Ф. позволяет быстро и наглядно составлять качественное, а иногда и довольно точное количественное представление о результате дифракции волн при различных сложных условиях их распространения. Он применяется поэтому при изучении распространения радио- и звуковых волн для определения эффективной трассы «луча», идущего от передатчика к приёмнику; для выяснения того, будут ли при данных условиях играть роль дифракционные явления; для ориентировки в вопросах о направленности излучения, фокусировке волн и т.п. Явлением Доплера называется зависимость частоты периодического возмущения приемника, вызванного действующей на него волной, от скоростей движения источника волн и приемника. Звуковые волны распространяются в упругой среде, и изменение частоты зависит от скоростей источника и приемника волн по отношению к этой среде. Электромагнитные волны особенные. Они не имеют специфической среды, колебаниями которой они являются. Явление Доплера, которое часто называют эффектом Доплера, в случае электромагнитных волн зависит только от относительного движения источника волн и приемника. В радиосвязи и радиовещании с использованием только земных приемников и передатчиков эффектом Доплера пренебрегают (сдвиг частоты радиостанции FМ- диапазона, принимаемой а автомобиле, движущемся со скоростью 100 км/ч не превышает 10 Гц). Однако спутниковые каналы связи подвержены ему достаточно сильно. Например, в двухметровом диапазоне, используемом для связи через радиолюбительские спутники, доплеровский сдвиг достигает нескольких килогерц, непрерывно изменяясь при прохождении спутником зоны видимости.

 



Поделиться:


Последнее изменение этой страницы: 2016-09-19; просмотров: 1673; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.129.63.214 (0.01 с.)