Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Проведение возбуждения по целому нерву. Опыт Гассера—Эрлангера.↑ Стр 1 из 18Следующая ⇒ Содержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Свойства скелетных мышц. 1. Длинные цилиндрические клетки (д. до 100мкм, ш. до 30см). 2. Многоядерные. 3. Поперечно исчерченные. 4. Сокращение инициируется соматическими нервными волокнами (извне). Сокращаются под влиянием импульсов, передаваемых по двигательным нервам от мотонейронов спинного мозга (отсутствие автоматизма). 5. Быстрое сокращение. Имеют быструю крастковременную деполяризацию и короткий период абсолютной рефрактерности. 6. Фазический тип сокращения. 7. Нет плотных контактов. 8. Незначительное влияние гормонов. В незначительной степени управляемы лекарственными средствами. 9. Иннервируется каждая клетка. 10. Входят в состав опорно-двигательного аппарата. Осуществляют произвольные мышечные движения, сопровождаемые значительными энергетическими затратами. 11. Не обладают способностью к дифференцировке и делению.
Свойства гладких мышц. 1. Веретенообразные клетки (д. до 400мкм, ш. до 10мкм). 2. Одноядерные. 3. Не исчерчены, миозиновые и актиновые волокна расположены нерегулярно. 4. Сокращение инициируется за счет нервных сплетений (внутр.) или через вегетативные симпатические или парасимпатические влияния, гормоны, растяжение мышцы (внешн.). 5. Медленное сокращение. 6. Тонический с элементами фазического тип сокращений. Тоническая активность - поддержка сокращения. 7. Соединены десмосомами. Возбуждение проникает через весь лист мышцы, автоматическая ритмическая активность. 8. Сильное влияние гормонов и хим. препаратов. 9. В мышцах, образующих функциональный синтиций иннерв. редкая клетка, в мышцах, состоящих из множества двигательных единиц - почти каждая. 10. Вовлечены во многие непроизвольные процессы (сосуды, жкт).
# 6. Механизмы проведения возбуждения по нервным волокнам. Законы проведения возбуждения в нервах. Проведение возбуждения по целому нерву. Опыт Гассера—Эрлангера. Большинство нервов являются смешанными, т.е. представлены совокупностью нервных волокон, различающихся по диаметру и степени миелинизации. В 1934 г. Н. Гассер и Р. Эрлангер провели опыт по анализу составляющих потенциала действия нервного ствола. Используя длинный седалищный нерв лягушки-быка, они установили ряд фактов и сделали некоторые выводы. · Потенциал действия в нерве возникает при действии порогового стимула.
· По мере увеличения интенсивности раздражения ПД нерва увеличивается градуально, достигая некоторого максимума. Такой ответ является результатом суммации ПД отдельных нервных волокон, каждое из которых возбуждается по закону «все или ничего». · Дальнейшее увеличение силы раздражения приводит не к увеличению амплитуды ответа, а к изменению его формы — возникает сложный потенциал действия. Нисходящая фаза ПД затягивается; на ней появляются дополнительные колебания, отражающие возбуждение новых групп волокон А(а, р, у, 5). · При еще большем раздражении к ПД добавляются волны В (только в вегетативных нервах) и С. Зная расстояние между раздражающими нерв и отводящими (регистрирующими) электродами, а также время от момента нанесения стимула до начала проявления очередной волны (максимума) на графике сложного потенциала, Гассер и Эрлангер сделали вывод, что смешанный нерв состоит из трех типов волокон, каждый из которых обладает собственным порогом и скоростью проведения, и вычислили ее для каждого из них. Наиболее быстро проводящие толстые миелиновые волокна отнесены к группе А. Меньшая скорость проведения у более тонких миелиновых волокон группы В. И, наконец, минимальна скорость проведения у тонких безмиелиновых волокон группы С. Законы проведения возбуждения по нервным стволам. · Закон физиологической и анатомической непрерывности — возбуждение может распространяться по нерву только при сохранении его морфологической и функциональной целостности. Травматическое повреждение нерва нарушают или полностью прекращают проведение возбуждения. · Закон изолированного проведения — возбуждение, распространяющееся в одной группе волокон (например, A«), не передается на волокна другой группы (например, В) того же ствола. Вследствие этого информация, передаваемая по разным типам волокон, носит строго направленный специфический характер. · Закон двустороннего проведения — возбуждение, возникающее в каком-либо участке нерва, распространяется в обе стороны от очага возникновения. Нерв имеет самую высокую функциональную лабильность, самый короткий период абсолютной рефрактерности и практически неутомляем.
Взаимодействие с рецепторами. 1. мембранное (белковые, пептидные, катехоламины, нейромедиаторы) Рецепторы сопряжены с G-белками, они либо участвуют в образовании вторичных посредников (ц-АМФ, ц-ГТФ,Са+2,простагландины – активируют протеинкиназы), либо сами выполняют регуляторные функции 2. внутриклеточное (стероидные и тиреоидные) Гормоны взаимодействуют с цитоплазматическими рецепторами и поступают в ядро, связываясь с хроматином, либо взаимод. с ядерным рецептором. Распад гормонов. В печени, почках, легких, мозге сущ. ферменты, инактивирующие и расщепляющие белковые гормоны. Часть разрушается в плазме крови, внутриклеточная деградация, распад комплекса гормон-рецептор в лизосомах.
#22 Охарактеризуйте эндокринную функцию гипоталамуса и гипофиза, роль гипоталамо-гипофизарной системы в регуляции периферических эндокринных желез. Гипофиз 1.аденогипофиз Соматотропин. Стимуляция синтеза белка клетками. Рост костей, мышц, органов. Анаболическое действие. Увеличение относительного содержания в организме белка и воды, снижение жиров. Лактотропин. Пролиферация роста молочных желез и секреция молока, поддержание активности желтого тела, стимуляция роста предстательной железы и яичек. Меланотропин. Синтез меланина, распределение гранул пигмента в коже, радужке, сетчатке, повышение возбудимости скелетных мышц и нервов, учащение сердцебиений. Фоллитропин. У женщин: стимуляция роста фолликулов, секреции эстрогенов и овуляции. У мужчин: стимуляция сперматогенеза, развития семявыносяших канальцев. Кортикотропин. Регуляция образования и секреции глюкокортикоидов коры надпочечников, мобилизация жира из жировой ткани. Бета-эндорфин. Торможение синтеза и секреции кортикостероидов, кортикотропина; снижение болевой чувствительности; подавление чувства голода. 2.нейрогипофиз Окситоцин. Стимуляция сокращений беременной матки. Выделение молока; усиление тонуса гладких мышц желудочно-кишечного тракта. Антидиуретический (АДГ),вазопрессин. Реабсорбция воды в почечных канальцах. Сосудосуживающее действие (повышение кровяного давления). Под контролем гипоталамуса находятся: гипофиз, щитовидная железа, половые железы, надпочечники и др. Регуляция тропных функций гипофиза осуществляется путем выделения гипоталамическими нейронами гормонов, поступающих в гипофиз. Выделение тропных гормонов гипофиза приводит к изменению функций эндокринных желез, секрет которых попадает в кровь и может действовать на гипоталамус. Гипоталамо-гипофизарнаясистема: Гипоталамус получает информацию о состоянии внутренней среды по нескольким каналам: 1.Афферентные возбуждения поступают в мозг от экстеро- и интеро-рецепторов по синаптическим связям и передаются к интернейронам гипоталамуса. Гипоталамус имеет связи со всеми отделами мозга. 2.Несинаптическая диффузная афферентация реализуется путем дистантного (через кровь) действия медиаторов и других биологически активных веществ. Нейросекреторная функция гипоталамуса. Нейроны гипоталамуса, получающие информацию от внешней и внутренней среды, передают ее с помощью медиаторов на нейросекреторные пептидергические нейроны. Последние синтезируют и выделяют разнообразные нейрогормоны, поступающие из гипоталамуса в гипофиз и(или), минуя его, в общий кровоток и далее к железам внутренней секреции.
В гипоталамусе выделяют три основные группы нейросекреторных клеток: нонапептидергические, либерин- и статинергические и моноаминергические, которые образуют в переднем, среднем и заднем гипоталамусе три группы центров. - Нонапептидергические крупноклеточные центрывключают крупноклеточное супраоптическое и паравентрикулярное ядра, вырабатывающие нонапептиды вазопрессин и окситоцин. - Либерин- и статинергические мелкоклеточные центрывырабатывают главные гипофизотропные гормоны и составляют так называемую гипофизотропную зону гипоталамуса. Аксоны нейросекреторных клеток, вырабатывающих либерины и статины. - Моноаминергические центры вырабатывают НА, серотонин, дофамин.
#23 Охарактеризуйте эндокринную функцию щитовидной и околощитовидных желез, механизмы ее регуляции, роль гормонов. Щитовидная железа Тироксин (Т4), трийодтиронин, тирокальцийтонин йодсодержащие гликопротеиды.. Обеспечение роста, умственного и физического развития. Стимуляция энергетического обмена, синтеза белка и окислительного катаболизма жиров и углеводов, поглощения кислорода и метаболизма всех клеток. Повышение чувствительности клеток к катехоламинам. Активация натриевого насоса. Стимуляция водного и электролитного обмена. Повышение возбудимости ЦНС. Гипофункция. Снижение обмена веществ, теплопродукции, замедление сердечного ритма. В детстве - кретинизм, во взрослом – микседема (при нарушении белкового обмена межклеточной жидкости повышается осмотическое давление тканевой жидкости и задерживается вода в тканях) Гиперфункция. Увеличение размеров железы, пучеглазие, тахикардия, повышение основного обмена, легкая возбудимость – базедова болезнь. К- клетки щитовидной железы, вилочковой и околощитовидной желез ы. Тирокальцитонин - Регуляция метаболизма кальция и фосфора; гипокальциемический фактор: подавление активности остеокластов и поступления кальция и фосфора в кровь. Околощитовидная железа Паратгормон - Регуляция метаболизма кальция и фосфора; гиперкальциемический фактор: стимулирует поступление кальция и фосфора из костной ткани в кровь, усиливает реабсорбцию кальция в почке и его всасывание в кишечнике, активирует остеокласты для выхода Са+2. Щитовидная железа относится к гипофиззависимым от передней доли гипофиза железам. Околощитовидные железы относятся к гипофизнезависимым.
#24 Охарактеризуйте эндокринную функцию поджелудочной железы, механизмы ее регуляции, роль гормонов.
Поджелудочная железа В-клетки. Инсулин; белок - Регуляция обмена углеводов, липогенез, гликогенез, активация утилизации клетками глюкозы, стимуляция синтеза белка, подавление липолиза, усиление образования жиров. А-клетки. Глюкагон; белок - Стимуляция гликогенолиза и липолиза в печени; усиление секреции адреналина; регуляция секреции инсулина; выраженный катаболический эффект. Поджелудочная железа натощак выделяет небольшое количество панкреатического секрета. Поджелудочный сок богат ферментами, которые синтезируются в ацинозных панкреоцитах. Ферменты поджелудочного сока переваривают все виды питательных веществ. Амилаза, липаза и нуклеазы секретируются поджелудочной железой в активном состоянии, а протеазы – в виде зимогенов. Секреция поджелудочной железы регулируется нервными и гуморальными механизмами. Парасимпатическая регуляция. Раздражение блуждающего нерва вызывает выделение поджелудочного сока, богатого ферментами. Холинергические волокна блуждающих нервов посредством ацетилхолина действуют на М-холинорецепторы панкреацитов. Симпатические волокна, иннервирующие поджелудочную железу, через посредство а-адренорецепторов тормозят поджелудочную секрецию. Адренергические эффекты снижения секреции обеспечиваются также уменьшением кровоснабжения поджелудочной железы путем сужения кровеносных сосудов через их а-адренорецепторы. Гуморальная регуляция. Секретин -стимулирует обильное сокоотделение и секрецию бикарбонатов. Секретин образуется в двенадцатиперстной кишке, а его высвобождение в кровь дуоденальными клетками происходит при переходе в нее кислого желудочного содержимого. Чем больше свободных ионов Н+ в двенадцатиперстной кишке, тем больше высвобождается секретина и тем выше объем панкреатического сока и секреция гидрокарбонатов. Холецистокинин -усиливает секрецию поджелудочной железы, высвобождаясь в кровь из ССК-клеток слизистой оболочки 12-перстной кишки. Секрецию поджелудочной железы усиливают также гастрин, серотонин, инсулин, бомбезин, соли желчных кислот. Тормозят выделение поджелудочного сока глюкагон, соматостатин, вазопрессин, энкефалин, кальцитонин. Вазоинтестинальный пептид может как возбуждать, так и тормозить панкреатическую секрецию. #25 Охарактеризуйте эндокринную функцию надпочечников, механизмы ее регуляции, роль гормонов. Надпочечники Корковое вещество: гидрокортизон (кортизол), выработка регулируется АКТГ - Регуляция обмена углеводов, белков, жиров, глюконеогенез, катаболическое действие, липолиз, противовоспалительное действие, повышение устойчивости к инфекции. Альдостерон - Регуляция минерального обмена и водно-солевого равновесия, увеличение активного транспорта натрия через клеточные мембраны, повышение реабсорбции натрия и воды в канальцах нефрона:задерживает в огранизме Na и Cl и усиливает выведение калия и аммония. Аналогичное влияние на клетки потовых, слюнных и кишечных желез. Участие в адаптации организма к повышенной температуре окружающей среды.
Андрогены; стероиды. Мозговое вещество: адреналин, НА, катехоламины - Стимуляция всех видов обмена веществ, гликонеогенеза, липолиза, термогенное действие. Учащение, усиление сокращений сердца, сужение кровеносных сосудов, расширение бронхов, зрачков. Увеличение вентиляции легких, доставки кислорода к мышцам, сердцу и мозгу. Надпочечники (корковое вещество) относятся к гипофиззависимым от передней доли гипофиза. Тропные гормоны аденогипофиза активируют выделение гормонов железам, которые воздействуют на аденогипофиз и тормозят его активность. Мозговое вещество – гипофизнезависимые. Участие гормонов надпочечников в приспособительных реакциях. Важная роль в регуляции содержания глюкозы в крови в условиях гипогликемии принадлежит гормонам надпочечников. В ответ на пониженное содержание глюкозы в крови в мозговом веществе надпочечников усиливается выработка адреналина. Это является следствием первичного влияния гипогликемии на гипоталамус и гипофиз. Роль гипоталамуса Раздражение рецепторных клеток гипоталамуса приводит к повышению тонуса симпатико-адреналовой системы, что вызывает повышенную секреторную активность мозгового вещества надпочечников и как следствие — увеличенный выброс в кровь адреналина. Последний вместе с глюкагоном активирует фосфорилазу печени и усиливает распад печеночного гликогена. Одновременно усиливается распад гликогена мышц, поэтому после введения адреналина или избыточного его образования увеличивается концентрация глюкозы и молочной кислоты в крови. Роль гипофиза Стимуляция «гипогликемической кровью» гипофиза приводит к дополнительной выработке адренокортикотропного гормона. Избыточное образование адренокортикотропного гормона способствует выделению корковым веществом надпочечников глюкокортикоидов. Повышение концентрации в крови последних приводит к усилению гликонеогенеза — новообразованию глюкозы из неуглеводов, в частности из продуктов расщепления белков и жиров, что, естественно, сопровождается увеличением концентрации глюкозы в крови и содержания гликогена в печени. В мышцах и других тканях одновременно происходит усиленный распад белков, а освобождающиеся аминокислоты используются затем как исходный материал для гликонеогенеза.
#26 Охарактеризуйте узловые механизмы функциональной системы, определяющей половые ф-ции организма.
Внутренний результат - определенный уровень половых гормонов в крови. К половым гормонам относятся прежде всего мужские половые гормоны — андрогены и женские половые гормоны — эстрогены и прогестины, вырабатываемые половыми железами. По достижении полового созревания основную роль по выработке половых гормонов берут на себя половые железы: семенники у мужских (у человека — яички) и яичники у женских особей. Половые гормоны, кроме специфического участия в организации половых функций, оказывают на организм широкое воздействие, влияя, в частности, на процессы тканевого метаболизма, на функциональное состояние нейронов в определенных структурах мозга и т.д. Выработка половых гормонов в организме определяется не только половыми железами, но находится в тесной зависимости от внешних влияний: в женском организме в форме менструального цикла. Гормональный фон создает как бы основу, обеспечивающую половую функцию, направленную на воспроизведение. Особенностью функциональной системы воспроизведения является то, что она строится на различных гормональных механизмах саморегуляции в женском и мужском организмах. Внешнее звено саморегуляции - механизмы активного взаимодействия особей противоположного пола в плане достижения биологического и социального результата, осуществления полового акта, воспроизведения и продления вида. Результатом деятельности данной системы является поддержание уровня половых гормонов, оптимального для каждого возрастного периода особей. Гормональная и репродуктивная функции мужского и женского организма находятся под контролем сложной нейроэндокринной организации, включающей в себя гипоталамус, гипофиз, периферические железы внутренней секреции. Первым уровнем, где реализуются гормональные эффекты, являются различные органы и ткани. Их клетки, дифференцируясь, приобретают специфические рецепторы к широкому спектру гормонов. Среди межклеточных тканевых регуляторов ведущую роль играют простагландины. Их действие опосредуется через циклический аденозинмонофосфат. Вторым уровнем нейроэндокринной регуляции являются периферические железы внутренней секреции. Продуцируемые ими гормоны, поступая в кровь, обладают дистантным и пролонгированным во времени действием. Воздействуя на территориально разобщенные органы, гормоны способствуют объединению их специфической деятельности. Например, молочная железа и матка обладают чрезвычайно высокой чувствительностью к половым гормонам. Периферические эндокринные железы в свою очередь регулируются тройными гормонами гипофиза — третий уровень. Четвертый уровень составляют гипоталамические центры, которые посредством гормонов контролируют тропные функции аденогипофиза. Пятый уровень — экстрагипоталамические влияния, непосредственно участвующие в регуляции нейросекреторных функций гипоталамических центров.
#27 Охарактеризуйте узловые механизмы функциональной системы, поддерживающей оптимальный для метаболизма уровень глюкозы в крови.
Углеводы играют ведущую роль в энергетическом обмене организма. Деятельность практически всех без исключения органов находится в большей или меньшей зависимости от содержания углеводов в притекающей к ним крови. Местные резервы углеводов в разных тканях неодинаковы, поэтому степень зависимости скорости обменных процессов в органах и их функции определяются концентрацией глюкозы в крови. Особенно большое значение глюкоза крови имеет для работы мышц, занимающих в количественном отношении преобладающее место в организме, и деятельности нервной системы благодаря ее ведущей, регулирующей роли в организме. Содержание глюкозы в артериальной крови взрослого человека составляет 4,2—6,4 ммоль/л. В венозной крови содержание глюкозы обычно несколько ниже, чем в артериальной, так как часть ее переходит из крови в ткани в процессе обмена. Артериовенозная разница зависит от специфики органа и уровня его активности: в период активной работы поглощение глюкозы возрастает и артериовенозная разница увеличивается, что косвенно говорит о функциональной активности того или иного органа. Периодические изменения уровня глюкозы в крови у человека и животных обусловлены суточными и сезонными колебаниями, приемом пищи, эмоциональным состоянием и возрастными особенностями. Нормальный уровень глюкозы в крови, так же как и его изменения, воспринимается специальными хеморецепторами, чувствительными к изменению концентрации глюкозы крови. Глюкозорецепторы расположены в печени, сосудах, желудочно-кишечном тракте, центральной нервной системе. Центральные глюкозорецепторы расположены в вентромедиальном отделе гипоталамуса и через рилизинг-факторы оказывают активирующее влияние на передний отдел гипофиза, а через него на деятельность таких желез внутренней секреции, как щитовидная железа, надпочечники и поджелудочная железа.
#28 Охарактеризуйте основные св-ва и особенности сердечной мышцы, обеспечивающие кровообращение. Микроструктура и физиологические свойства сердечной мышцы. Сердце человека — четырехкамерный полый мышечный орган, состоящий из двух предсердий и двух желудочков. Правая и левая части сердца разделены перегородкой и не сообщаются между собой. Предсердия и желудочки отделены друг от друга с помощью створчатых (атриовентрикулярных) клапанов. Желудочки от магистральных сосудов (аорты и легочного ствола) отделены полулунными клапанами. Клапанный аппарат работает по принципу разности давления между полостями, которые эти клапаны разделяют. Мышечная ткань сердца состоит из отдельных клеток — миоцитов. Различают два вида миоцитов — сердечные проводящие миоциты и сократительные миоциты. У кардиомиоцитов имеются внешняя оболочка (сарколемма), ядро, митохондрии и продольные сократительные элементы — миофибриллы. Характерной особенностью ткани сердечной мышцы является наличие в области вставочных дисков зон плотного прилегания мембран кардиомиоцитов — нексусов. За счет этого в области нексусов создается низкое электрическое сопротивление по сравнению с другими областями мембраны, что обеспечивает быстрый переход возбуждения с одного волокна на другое. Такое псевдосинцитиальное строение сердечной мышцы определяет ряд ее особенностей. Св-ва сердечной мышцы: 1. сократимость. Ритмические сокращения предсердий, затем желудочков. Закон «все или ничего»: на пороговое раздражение-сокращение максимальной амплитуды. 2. растяжимость – под влиянием растягивающей силы (давления) увеличивает длину без заметного нарушения структуры. 3. эластичность – восстановление исходного состояния мышцы после прекращения действия деформирующей силы. 4. возбудимость. В ответ на раздражение серд. м-ца возбуждается, порождая потенциал, и сокращается. В систолу – абсолютная рефрактерная фаза, в диастолу – фаза относительной рефрактерности, завершающаяся экзальтацией(пауза). Экстрасистолия - самая распространённая форма аритмии, характеризующаяся внеочередными сокращениями сердца (экстрасистолы), обусловленными импульсами из возникшего в миокарде дополнительного очага возбуждения. Поскольку мышца сердца после каждого сокращения остаётся некоторое время невозбудимой, очередной нормальный импульс, как правило, не может вызвать систолу и возникает более длительная, чем после нормального сокращения, т. н. компенсаторная пауза.
#29 Объясните ионные механизмы возникновения потенциала действия сократительных кардиомиоцитов, проанализируйте изменение возбудимости в различных фазах потенциала действия. Клетки миокарда в состоянии покоя характеризуются низкой проницаемостью для Na+, поэтому спонтанных сдвигов мембранного потенциала в них не наблюдается. Потенциал действия клеток рабочего миокарда состоит из фазы быстрой деполяризации, начальной быстрой реполяризации, переходящей в фазу медленной реполяризации (фаза плато), и фазы быстрой конечной реполяризации (рис. 9.8). Фаза быстрой деполяризации создается резким повышением проницаемости мембраны для ионов натрия, что приводит к возникновению быстрого входящего натриевого тока. Происходит изменение знака мембранного потенциала с -90 до +30мВ. Деполяризация мембраны вызывает активацию медленных натрий-кальциевых каналов, в результате чего возникает дополнительный деполяризирующий входящий кальциевый ток, который приводит к фазе плато. Натриевые каналы инактивируются и клетки находятся в абсолютной рефрактерности. Конечная реполяризация в клетках миокарда обусловлена постепенным уменьшением проницаемости мембраны для кальция и повышением проницаемости для калия. В результате входящий ток кальция уменьшается, а выходящий ток калия возрастает, что обеспечивает быстрое восстановление мембранного потенциала покоя. Длительность потенциала действия кардиомиоцитов составляет 300—400 мс, что соответствует длительности сокращения миокарда. Потенциал покоя поддерживается на уровне -90мВ и определяется ионами К+.
#30 Раскройте современные представления о субстрате и природе автоматии серд. м-цы. Объясните ионные мех-мы возникновения потенциала действия пейсмейкерных клеток. Автоматия сердечной мышцы. Автоматизм — способность сердца сокращаться под влиянием возникающих в нем возбуждений. Ритмическая деятельность сердца происходит благодаря наличию в области ушка правого предсердия ведущего центра автоматизма — синусно-предсердного (синусного) узла. От него по проводящим волокнам предсердий возбуждение достигает атриовентрикулярного узла, расположенного в стенке правого предсердия вблизи перегородки между предсердиями и желудочками. Здесь возбуждение переходит на миокард желудочков по волокнам пучка Гиса (предсердно-желудочкового пучка) и достигает волокон Пуркинье (сердечных проводящих миоцитов). В норме водителем ритма сердца является синусно-предсердный узел; он обладает всеми качествами истинного пейсмекера, а именно: • повышенной по сравнению с другими отделами сердца возбудимостью, чувствительностью к влияниям гуморальной и нервной природы; • повышенная чувствительность к химическим воздействиям • спонтанной ритмической медленной деполяризацией клеточных мембран. Теории автоматизма. 1. эндогенные. Периодические возбуждения в узлах автоматии связаны с накоплением в них в диастоле ионов водорода, электролитов, молочной кислоты, адреналина, которые разрушаются в систолу. 2. экзогенные. Влияние веществ плазмы крови и электрическое поле сердца. В клетках рабочего миокарда ПП в интервалах между возбуждениями поддерживается на постоянном уровне. Клетки синоатриального узла не могут удерживать ПП.
Наблюдается спонтанная деполяризация. В этих клетках во время диастолы мембранный потенциал, достигнув максимального значения, соответствующего величине потенциала покоя (60—70 мВ), начинает постепенно снижаться. Этот процесс называют медленной диастолической деполяризацией (МДД). Она продолжается до того момента, когда мембранный потенциал достигает критического уровня (40—50 мВ), после чего возникает потенциал действия, распространяющийся по проводящей системе к миокарду предсердий и желудочков. Для потенциала действия пейсмекерных клеток синоатриального узла характерны малая крутизна подъема, отсутствие фазы ранней быстрой реполяризации, а также слабая выраженность «овершута» и фазы «плато». Медленная реполяризация плавно сменяется быстрой. Во время этой фазы мембранный потенциал достигает максимальной величины, после чего вновь возникает фаза МДД. Спонтанная медленная диастолическая деполяризация обусловлена совокупностью ионных процессов, связанных с функциями плазматических мембран. Среди них ведущую роль играют медленное уменьшение калиевой и повышение натриевой и кальциевой проводимости мембраны во время диастолы, параллельно чему происходит падение активности электрогенного натриевого насоса. К началу диастолы проницаемость мембраны для калия на короткое время повышается, и мембранный потенциал покоя приближается к равновесному калиевому потенциалу, достигая максимального диастолического значения. Затем проницаемость мембраны для калия уменьшается, что и приводит к медленному снижению мембранного потенциала до критического уровня. Одновременное увеличение проницаемости мембраны для натрия и кальция приводит к поступлению этих ионов в клетку, что также способствует возникновению потенциала действия. Снижение активности электрогенного насоса дополнительно уменьшает выход натрия из клетки и, тем самым, облегчает деполяризацию мембраны и возникновение возбуждения.
#31 Проанализируйте положение клапанов и изменение давления в полостях сердца в динамике сердечного цикла. Укажите временные хар-ки фаз серд. цикла. Объясните принцип фонокардиографии и происхождение фонокарлиограммы (тонов, шумов). В норме сердце человека совершает в среднем 70 уд/мин. Это означает, что один сердечный цикл длится 0,8 с. При этом длительность систолы предсердий составляет 0,1 с, длительность систолы желудочков — 0,33 с. Диастола предсердий длится 0,7 с, желудочков — 0,47 с. Таким образом, предсердия большую часть цикла (0,7 с) находятся в состоянии диастолы, а у желудочков диастола значительно меньше. Систола предсердий. Систола предсердий начинается при распространении возбуждения от синусно-предсердного узла. В процесс сокращения вовлекаются все миокардиоциты — и правого, и (чуть позже) левого предсердия. В результате сжимаются устья полых вен, впадающих в предсердия, повышается внутрипредсердное давление. В результате вся кровь, которая за время диастолы предсердия накопилась в нем, изгоняется в желудочки: примерно за всю систолу предсердий (0,1 с) в желудочки дополнительно входит около 40 мл крови, т.е. около 30 % от конечно-диастолического объема. Благодаря этому, во-первых, возрастает кровенаполнение желудочков и, во-вторых создается сила, которая вызывает дополнительное растяжение сократительных кардиомиоцитов желудочков. Систола желудочков. Систолу желудочков принято делить на два периода — период напряжения и период изгнания крови, а диастолу — на три периода — протодиастолический период, период изометрического расслабления и период наполнения. Цикл систола—диастола желудочков представлен в следующем виде. Систола желудочков — 0,33 с. Период напряжения — 0,08 с: • фаза асинхронного сокращения — 0,05 с; • фаза изометрического сокращения — 0,03 с. Период изгнания крови — 0,25 с: • фаза быстрого изгнания — 0,12 с; • фаза медленного изгнания — 0,13 с. Диастола желудочков — 0,47 с. Протодиастолический период — 0,04 с. Период изометрического расслабления — 0,08 с. Период наполнения кровью — 0,35 с: • фаза быстрого наполнения — 0,08 с; • фаза медленного наполнения — 0,26 с; • фаза наполнения, обусловленная систолой предсердия,— 0,1 с. Систола желудочков занимает 0,33 с. В период напряжения повышается давление внутри желудочков, закрываются атриовентрикулярные клапаны. Это происходит в том случае, если давление в желудочках становится чуть выше, чем в предсердиях. Промежуток времени от начала возбуждения и сокращения кардиомиоцитов желудочков до закрытия атриовентрикулярных клапанов называется фазой асинхронного сокращения. В оставшиеся 0,03 с происходит быстрое повышение внутрижелудочкового давления: кровь находится в замкнутом пространстве — атриовентрикулярные клапаны закрыты, а полулунные еще не открыты. Из-за несжимаемости крови и неподатливости стенок желудочков в результате продолжающегося сокращения миокардиоцитов в полостях желудочков сердца возрастает давление. Это — фаза изометрического сокращения, в конце которой открываются полулунные клапаны. В левом желудочке это происходит при достижении давления 75—85 мм рт.ст., т.е. такого давления, которое чуть выше, чем в аорте в период диастолы, а в правом желудочке — 15—20 мм рт.ст., т.е. чуть выше, чем в легочном стволе. Открытие полулунных клапанов создает возможность изгнания крови в аорту и легочный ствол. В остальное время систолы желудочков — 0,25 с — происходит изгнание крови. В начале процесс изгнания совершается быстро — давление в выходящих из желудочков сосудах (аорте, легочном стволе) сравнительно небольшое, а в желудочках продолжает нарастать: в левом до 120—130 мм рт.ст., в правом до 25—30 мм рт.ст. Такое же давление создается соответственно в аорте и легочном стволе. По мере заполнения аорты и легочного ствола выходящей из желудочков кровью сопротивление выходящему потоку крови увеличивается и фаза быстрого изгнания сменяется фазой медленного изгнания. Диастола желудочков занимает около 0,47 с. Она начинается с периода протодиастолы: это промежуток времени от начала снижения давления внутри желудочков до момента закрытия полулунных клапанов, т.е. до того момента, когда давление в желудочках станет меньше давления в аорте и легочном стволе. Этот период длится около 0,04 с. Давление в желудочках в следующие 0,08 с продолжает очень быстро падать. Как только оно снижается почти до нуля, открываются атриовентрикулярные клапаны и желудочки наполняются кровью, которая накопилась в предсердиях. Время от закрытия полулунных клапанов до открытия атриовентрикулярных клапанов называется периодом изометрического расслабления. Период наполнения кровью желудочков длится 0,35 с. Начинается он с момента открытия атриовентрикулярных клапанов: вся кровь (около 33 мл) в фазу быстрого наполнения устремляется в желудочки. Затем наступает фаза медленного пассивного наполнения, или фаза диастазиса,— 0,26 с; в этот период вся кровь, которая поступает к предсердиям, протекает «транзитом» сразу из вен через предсердие в желудочки. В завершение наступает систола предсердий, которая за 0,1 с «выжимает» дополнительно около 40 мл крови в желудочки. Эту фазу называют пресистолической. Фонокардиография — регистрация звуковых явлений, возникающих в различные фазы работы сердца. I (систолический) тон возникает в начале систолы желудочков; совпадает с конечной частью комплекса QRS ЭКГ; I тон обусловлен звуковыми явлениями при закрытии атриовентрикулярных клапанов Длительность I тона — 0,07—0,13 с. II (диастолический) тон возникает в начале диастолы; совпадает с окончанием зубца ГЭКГ. II тон возникает при закрытии полулунных створок аорты и легочного ствола Длительность II тона — 0,06—0,10 с. • Расстояние от начала I тона до начала II тона называется механической систолой; интервал QRST на ЭКГ — электрической систолой. • Участок ФКГ от начала II тона до начала I тона называется механической диастолой. • У здорового человека тоны и паузы сердца при 75 уд/мин имеют следующую продолжительность: первый тон — 0,11 с, первая пауза — 0,2 с; второй тон — 0,07 с, вторая пауза — 0,42 с. • У детей и моло
|
|||||||||
Последнее изменение этой страницы: 2016-08-26; просмотров: 1255; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.133.149.244 (0.021 с.) |