Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Патофизиология водорастворимых витаминовСодержание книги
Поиск на нашем сайте
ВИТАМИН В1 (тиамин) Витамин В1 синтезируется зелеными растениями и микроорганизмами. Животные и человек этот витамин не синтезируют, поэтому полностью зависят от его поступления из внешней среды. Содержится витамин в дрожжах. В зародышах и оболочках злаков, а следовательно, в хлебе из муки простого помола. Переработка растительного сырья (удаление отрубей) всегда сопровождается резким снижением уровня витамина в полученном продукте. Шлифованный рис, например, совсем не содержит витамина. Другими источниками витамина являются: горох, фасоль, овес, отруби злаковых, арахис, ткани органов млекопитающих, в меньших количествах - овощи и фрукты, в незначительных количествах тиамин синтезируется в кишечнике. · Введенный с пищей витамин В1 всасывается в тонком кишечнике стенке, а также в печени и почках фосфорилируется и превращается в дифосфотиамин (кокарбоксилазу). Распределяется тиамин по всем тканям (печень, сердце, мозг, почки, селезенка). Около 1 мг тиамина ежедневно метаболизируется. Причинами гиповитаминоза, кроме недостаточного его поступления с пищей могут быть поражение печени с развитием цирроза, длительное несбалансированное питание, низкое содержание в грудном молоке, прием химиопрепаратов, являющихся антагонистами кокарбоксилазы. · Особенно важную роль витамин В1 играет в углеводном обмене. Активной формой этого витамина является тиамина пирофосфат, который выполняет функцию простетической группы декарбоксилаз, играющих важную роль в межуточном обмене углеводов. В виде кофермента пируватдегидрогеназы осуществляет окислительное декарбоксилирование пировиноградной кислоты, превращая ее в ацетил-КоА. При недостатке витамина В1 в организме накапливаются пируват и лактат, уменьшается содержание ацетил КоА, замедляется цикл Кребса, уменьшается образование ацетилхолина. Большая концентрация пирувата токсически действует на ЦНС. · Особого внимания заслуживает значение витамина В1 для функционалтного состояния ЦНС и мышечной деятельности.Нарушение В1-витаминного баланса лишает ЦНС возможности эффективно использовать глюкозу при одновременном воздействии на нее промежуточных продуктов обмена веществ, токсически влияющих на мозг. Витамин принимает участие в передаче возбуждения с нерва на исполнительный орган. Он угнетает холинэстеразу и тем самым усиливает действие ацетилхолина. Другая коферментная форма витамина В1 входит в состав фермента транскетолазы, участвующей в пентозофосфатном пути расщепления углеводов, одним из конечных продуктов которого является рибоза, необходимая для синтеза нуклеиновых кислот. Нарушение образования ацетил КоА из пирувата приводит к снижению выработки энергии в цикле Кребса. Также витамин обладает антиоксидантными и иммуностимулирующими свойствами. При недостатке тиамина в пище развивается полиневрит (бери-бери – в переводе «я не могу»), главными признаками которого являются параличи, затем контрактуры конечностей, особенно кистей рук. Морфологически обнаруживается дегенерация нервных волокон, милиновых оболочек и задних столбов спинного мозга. Кроме того, отмечаются апатия, понижение аппетита, рвота, диспепсия, ригидность мышц, исчезновение рефлексов (подошвенных, коленных), нарушения памяти (синдром Корсакова при алкоголизме). Характерно развитие застойной сердечной недостаточности. · У детей наблюдается только "влажная" форма, развивающаяся в первые месяцы жизни. Состояние характеризуется сердечной недостаточностью с высоким сердечным выбросом, цианозом, тахикардией, судорогами, анорексией, рвотой, зеленоватым окрашиванием каловых масс и иногда заканчивается внезапной смертью. · При всех формах наблюдается повышенная нервная возбудимость, раздражительность и депрессия. · При тяжело протекающем дефиците развивается энцефалопатия Вернике, для которой типичны спутанность сознания, офтальмоплегия, нистагм, тремор и часто периферическая нейропатия. Авитаминоз В1 сопровождается угнетением синтеза липидов и стероидов, в результате чего может развиться гипофункция ряда желез внутренней секреции, а также задержка биосинтеза белков и нуклеиновых кислот. Азотистый баланс становится отрицательным, масса тела снижается. ВИТАМИН В2 (Рибофлавин) · Рибофлавин широко распространен в природе. Богатым источником рибофлавина является пивные дрожжи и молочные продукты. Довольно много витамина также в яйцах, особенно в желтке. Витамин В2 синтезируется в толстой кишке, но всасывается ли он в ней, неизвестно. Рибофлавин всасывается в тонком кишечнике, подвергается фосфорилированию с образованием флавинадениндинуклеотида (ФАД). Все изученные флавопротеиды являются окислительно-восстановительными ферментами и относятся к группе оксидоредуктаз, выполняя функции транспорта водорода в процессе тканевого дыхания. Один их них является акцептором водорода от восстановленных пиридиннуклеотидных коферментов (НАД и НАДФ) и переносит его далее на соответствующие акцепторы. Последние отрывают от него электроны и переносят их через систему цитохромов на молекулярный кислород. Ряд ферментов, содержащих рибофлавин, участвуют в обмене других витаминов, в частности пантотеновой кислоты, холина, пиродоксина, фолиевой и оротовой кислот. Рибофлавин вместе с пиридоксином участвуют в обмене триптофана в организме. Проявление недостаточности витамина В2 связано с понижением интенсивности тканевого дыхания, а также с нарушением межуточного обмена углеводов и белков. Полное отсутствие рибофлавина в пище вызывает острый арибофлавиноз. Он характеризуется внезапным развитием коматозного состояния и быстро наступающей гибелью. При частичной недостаточности рибофлавина развивается хроническое заболевание, характеризующееся нарушением роста, возникновением кожных поражений в виде облысений и дерматитов и шелушением кожи и появлением эрозий, поражением глаз в виде васкуляризации роговой оболочки, кератитов, в некоторых случаях катаракты. Арибофлавиноз у человека проявляется раньше всего поражением языка и губ: язык пурпурно-красного цвета, шероховатый, губы болезненные, мокнущими трещинами в углах. На волосистой части головы, мошонки и других частях тела могут развиться дерматиты. Отмечаются также глосситы, сопровождающиеся чувством жжения в языке. Характерны также специфические поражения глаз. Одним их постоянных симптомов арибофлавиноза считается васкуляризация роговой оболочки, хотя она может развиться не только при недостаточности рибофлавина. Субъективно при арибофлавинозе отмечается светобоязнь. В тяжелых случаях описаны конъюнктивиты и кератиты, блефароспазм, фотофобия, чувство жжения, слезотечение и васкуляризация роговицы со снижением остроты зрения. ВИТАМИН В6 (пиридоксин) Витамин В6 имеет широкое распространение в природе. Он найден у различных микроорганизмов, в тканях животных и растений. Наиболее богатым источником витамина В6 является пивные дрожжи, мясо, рыба, молоко, цельное зерно злаков и особенно отруби злаков. Относительное высокое количество витамина найдено в горохе, бобах. У животных много витамина В6 находится в ткани печени, сердца, почек. Он также синтезируется микрофлорой кишечника. Всасывание пиродоксина в желудочно-кишечном тракте осуществляется преимущественно в толстой кишке в результате пассивной диффузии. Из циркулирующей крови свободный пиродоксин быстро проникает в ткани, где подвергается окислению, а затем фосфорилированию и превращается в пиридоксалевые коферменты, которые, соединяясь в клетках со специфическим протеином, образуют соответствующие ферменты. Витамин В6 существует в трех формах: пиридоксин, пиридоксаль, пиридоксамин. Все три формы витамина легко всасываются в желудочно-кишечном тракте. Превращаются в печени в пиридоксальфосфат - активную форму витамина. Суточная потребность в витамине В6 составляет 0,5-2,0 мг в зависимости от возраста. Пиридоксальфосфат служит ферментом для аминокислотных декарбоксилаз и трансаминаз, регулирующих белковый обмен. Они участвуют в трансаминировании и декарбоксилировании аминокислот, в образовании биогенных аминов. Витамин В6 участвует в синтезе и разрушении катехоламинов, гистамина, допамина, ГАМК, превращение триптофана в никотиновую кислоту и серотонин, синтезе гема, удлиняет время свертывания крови, является ингибитором агрегации тромбоцитов, участвует в синтезе КоА, арахидоновой кислоты, которая необходима для роста и развития организма. Пиридоксалевые ферменты присутствуют, главным образом, в тканях с энергетическим обменом веществ - печени, почках, сердце. У теплокровных животных наибольшим резервом витамина В6 является пиридоксальфосфат, входящий в состав фосфорилазы скелетной и сердечной мускулатуры. Причинами гиповитаминоза может быть кормление детей молочными смесями, содержащими недостаточное количество пиридоксина, нарушение всасывание или необычно высокое потребление в синтезе гемоглобина (пиридоксинзависимая анемия). Основные нарушения при этом ГИПОВИТАМИНОЗЕ проявляются в изменениях нервной системы (повышение возбудимости, судороги) и пеллагроподобные изменения кожи. Изменения в ЦНС объясняются нарушением обмена глютаминовой кислоты, из которой образуется гамма-аминомаслянная кислота (ГАМК), оказывающая тормозящее влияние в нейронах коры головного мозга. При снижении уровня ГАМК возникают судороги. Отсутствие фосфодиридоксаля нарушает превращение триптофана в никотиновую кислоту, что приводит к развитию пеллагры и накоплению ксантуреновой кислоты, препятствует образованию инсулина, способствует развитию сахарного диабета. У детей являются раздражительность, вдутие живота, гипотрофия, гипохромная микроцитарная анемия, судороги, нарушению умственной деятельности, потере аппетита, остановке роста, появлению тошноты. ВИТАМИН В12 (цианокобаламин) Витамин В12 относится к группе кобаламинов, веществ, содержащих в своей структуре кобальт. Существует в 2 метаболически неактивных формаx: в виде цианкобаламина, гидроксикобаламина. В основном витамин В12 попадает в организм человека с пищевыми продуктами животного происхождения (мясо, печень, почки, устрицы, рыба и яичный желток). Минимальная суточная потребность в витамине В12 около 0,3-2 мкг в сутки или для ребенка в возрасте до 1 года – 0,3-0,5 мкг, с 1 до 7 лет – 0,7-1 мкг, с 7 до 15 лет – 1-2 мкг. Поступивший с пищей витамин В12 в желудке вступает в связь с «внутренним фактором» Кастла, относящимся к мукопротеидам. У человека внутренний фактор (ВФ) образуется париетальными клетками слизистой оболочки фундального отдела желудка. ВФ связывает витамин В12 и защищает его, от утилизации кишечной флорой, облегчает адсорбцию и всасывание. В процесс адсорбции комплекс витамин В12 - ВФ связывается со специфическими рецепторами подвздошной кишки. Пройдя эпительный барьер кишечника, витамин В12 попадает в ток крови, где он связывается с белками плазмы, транскобаламинами –1,-2,-3. Основным местом депонирования витамина в организме является печень, где может содержаться его от 2 до 2,5 мг. Этого количества цианокобаламина, даже при полном отсутствии поступления, хватит на 4-5 лет для поддержания эритробластического кроветворения. Максимальное всасывание происходит через 8-12 ч. Для всасывания необходим ионизированный кальций. При низком значении рН (при хроническом панкреатите) может нарушаться его всасывание. Витамин В12 обладает чрезвычайно многообразным действием в организме, катализируя реакции белкового, жирового и углеводных обменов. Из всех известных в настоящее время кобаламидных ферментов только две обнаружены у человека и животных: метилкобаламин и аденозилкобаламин. МЕТИЛКОБАЛАМИН в печени переводит фолиевую кислоту в активную форму тетрагидрофолиевую, обеспечивающую синтез пуриновых и пиримидиновых оснований, входящих в структуру ДНК. Отсутствие витамина В12 приводит к нарушению выработки ДНК. Недостаток ДНК нарушает деление клеток. Прежде всего страдают активно размножающиеся клетки кроветворной системы, кроветворение переходит на мегалобластический тип, развивается гиперхромная анемия. Также нарушается регенерация эпителия желудочно-кишечного тракта. · АДЕНОЗИЛКОБАЛАМИН служит коэнзимом для превращения метилмалоновой кислоты в сукциниловую кислоту. Он способствует образованию янтарной кислоты из метилмалоновой. Значительное ингибирование этой реакции ведет к развитию опасного для жизни состояния - метилмалоновой ацидурии. При дефиците витамина В12 в организме накапливается токсическая метилмалоновая кислота, нарушается синтез жирных кислот и миелина, что ведет к возникновению неврологических симптомов. Фармакологические аналоги: цианокобаламин, кобамамид, оксикобаламин. Различают 2 формы эндогенного В12-гиповитаминоза: ГАСТРОГЕННЫЙ, причиной которого является отсутствие или недостаточность внутреннего фактора Кастла, что приводит к нарушению использования пищевого витамина В12 и ЭНТЕРОГЕННЫЙ гиповитаминоз вследствие нарушения всасывания витамина В12 в кишечнике (наличие широкого лентеца, значительное разрушение витамина патологической кишечной микрофлорой). ВИТАМИН B3 (ниацин, никотиновая кислота, РР) В природе витамин РР встречается в двух формах – в виде никотиновой кислоты (НК) и никотинамида (НАМ), которые довольно широко распространены в растительных и, особенно, животных продуктах. Из растительных продуктов богаче всего сухие пивные, пекарские дрожжи, гречневая крупа, пшено, очень богаты НК животные продукты: мясо домашней птицы, баранина, телятина, печень, почки и сердце. Никотиновая кислота - один из самых стойких витаминов в отношении хранения и кулинарной обработки. Поступающие с пищей НК и НАМ всасываются с фундальной части желудка и на всем протяжении тонкого кишечника. В условиях острого дефицита НК и НАМ ткани могут синтезировать НАМ из триптофана. Почти весь имеющийся в тканях и жидкостях животных и человека витамин РР включен в структуру коферментов НАД и НАДФ, которые вместе с апоферментами катализируют окислительно-восстановительные реакции клеточного обмена. НАД и НАДФ находятся во всех клетках организма животных и растений. · Наиболее важная функция никотинамидных коферментов состоит в их участии в переносе водорода из окисляемых субстратов на флавиновые ферменты в процессе клеточного дыхания. Таким образом коферментные функции НАД и НАДФ проявляются главным образом в окислительно-восстановительных реакциях, в обратимом присоединения атома водорода и образовании АТФ. Также они входят в состав ферментов, участвующих в метаболизме протеидов, синтезе жиров. При недостаточности НК развивается пеллагра, главными признаками которой являются дерматит, поражение желудочно-кишечного тракта (диарея), и слабоумие (деменция). Клиническая картина пеллагры включает следующие явления: вялость, апатия, слабость в ногах, быстрая утомляемость, головокружение, раздражительность, бессонница, бледность и сухость кожи, снижение аппетита, падение веса, понижение сопротивляемости организма к инфекциям и понижение трудоспособности. Ранними клиническими симптомами пеллагры является понос и изменения в полости рта. Весьма характерны изменения языка. Вначале края и кончик языка ярко-красные. Постепенно краснота переходит на весь язык и он выглядит блестящим, как бы лакированным. Наряду с этим наблюдается явления со стороны кишечника: метеоризм, урчание, поносы. Через некоторое время после начало поноса больные замечают появление на коже симметричных красных пятен (пеллагрическая эритема). Она чаще располагается на открытых частях тела: тыле кистей рук, стоп, шее, лице, особенно на носу, щеках, лбу и вокруг рта. У детей эритема лица протекает с острым отком и резкой болезненностью. При неосложненной эритеме через несколько дней начинается отрубевидное, желтовато-коричневое шелушение. При развитии заболевания наблюдается глубокие нарушения функций центральной и периферической нервной системы: шум и звон в ушах, нарушение вкуса, сильный зуд, головные боли, боли в позвоночнике, конечностях ощущение опоясывания, онемения, бегание мурашек, поверхностные и глубокие расстройства тактильной и болевой чувствительности, неуверенная походка, тяжелая адинамия, дрожание головы и конечностей, парезы, мышечная атрофия, неподвижность и скованность. Самое тяжелое в клинической картине пеллагры - нарушение психики. Лечение пеллагры дает тем больший эффект, чем раньше оно начато. Специфическим методом является назначение никотиновой кислоты или ее амида. Суточная потребность в никотиновой кислоте (и никотинамиде) составляет 5-20 мг, или для ребенка в возрасте до 1 года – 3-7 мг, с 1 до 7 лет – 8-15 мг, с 7 до 15 лет – 15-20 мг в день - 2-3 недели. ВИТАМИН С (аскорбиновая кислота) Аскорбиновая кислота является одним из наиболее распространенных в природе витаминов. Источникам витамина С является шиповник, черная смородина, капуста, помидоры, цитрусовые, картофель и др. У человека, обезьян, морских свинок в организме аскорбиновая кислота не синтезируется. Всасывание аскорбиновой кислоты осуществляется системой кровеносных капилляров в тонком кишечнике как путем простой диффузии, так и с участием переносчика в присутствии ионов натрия. Для поступления в клетки необходим переход аскорбиновой кислоты в дегидроаскорбиновую, которая легко диффундирует в клетки без затраты энергии. Параллельно с окислением аскорбиновой кислоты в организме происходит восстановление дегидроаскорбиновой кислоты в аскорбиновую. Это происходит в эритроцитах под влиянием фермента дегидроаскорбинредуктазы при участии восстановленной формы глютатиона. Не все ткани одинаково усваивают аскорбиновую кислоту. Аскорбиновая кислота легко всасывается в желудочно-кишечном тракте, концентрируется в железистой ткани, ее содержание в лейкоцитах и тромбоцитах выше, чем в плазме крови. Очень много ее поступает в ЦНС, лейкоциты, надпочечники, сердечную мышцу и т.п. Запасы в организме составляют 1500 мг, запаса хватает организму на 1-1,5 месяца. 2,2-4,1% витамина С метаболизируется до щавелевой кислоты или других водорастворимых метаболитов. Она необходима для нормального синтеза и обмена гормонов надпочечников и адекватного функционирования симпатико-адреналовой системы. Основная роль аскорбиновой кислоты – транспорт электронов и участие в окислительно-восстановительных процессах. Витамин С в эритроцитах повышает активность некоторых ферментов, катализирующих реакции гликолиза: гексокиназы, фосфогексоизомеразы и фосфоглюкомутазы. Кроме того, аскорбиновая кислота необходима для образования коллагена из проколлагена, в котором содержится очень большое количества оксипролина. В настоящее время выяснено, что аскорбиновая кислота участвует в гидроксилировании пролина - коллагена, укрепляет базальную мембрану сосудов, этим она способствует поддержанию нормальной проницаемости капилляров. Витамин С оказывает антитоксическое действие при токсических поражениях печени, участвует в детоксикации гистамина, в синтезе интерферона, облегчает течение простудных заболеваний, оказывает антианемическое действие, так как способствует усвоению железа в желудочно-кишечном тракте; оказывает антисклеротическое действие, так как снижает биосинтез увеличивает распад холестерина. Участвуя в биологических реакциях окисления и восстановления аскорбиновая (и дегидроаскорбиновая) кислота обеспечивает: антиоксидантную защиту клеток организма, стимуляцию гуморальных и клеточных механизмов иммунитета (миграцию лимфоцитов, хемотаксис, синтез и освобождение интерферона), образование коллагена и внутриклеточного структурного вещества, всасывание железа и превращение окиси железа в закисную форму, образование гемоглобина, созревание эритроцитов, биосинтез катехоламинов, метаболизм: фолиевой кислоты, углеводов, альдостерона, циклических нуклеотидов, простагландинов, гистамина. Основные симптомы недостаточности витамина С: повышенная ломкость кровеносных капилляров, общая слабость, апатия, повышенная утомляемость, снижение аппетита, задержка роста, повышенная восприимчивость к инфекциям, бледность десен, их отечность, разрыхленность, кровоточивость при чистке зубов. В далеко зашедших случаях цинги нарастают явления гингивита, расшатываются и выпадают зубы. По мере развития скорбута обнаруживается красновато - синеватые пятна на ягодицах, на голенях подкожные кровоизлияния. В результате кровоизлияний в толпу мышц наблюдается их болезненность, ригидность. В тяжелых случаях поражаются внутренние органы (кровохарканье, неспецифические пневмонии, обострение туберкулезного процесса). Развиваются сердцебиение, одышка, происходит ослабление сердечного толчка, тоны сердца глухие. У детей раннего возраста скорбут проявляется в особой форме - в виде болезни Малера-Барлова. Особенности заболевания: болезненность конечностей при движениях, припухание диафизов, беспокойства ребенка, длительный субфебрилитет. В тяжелых случаях могут проявляться кровоизлияния в глазницы, веки, под надкостницу, в косно-хрящевую часть ребер, в кости лица и черепа. На коже мелкоточечная петехиальная сыпь. Нарушается гемопоэз: понижается количество гемоглобина, эритроцитов и лейкоцитов. ВИТАМИН Р (биофлавоноиды) Витамин Р содержится в цитрусовых (особенно в кожуре), черной смородине, в листьях чая. Черники и др. Вещества, обладающие Р-витаминной активностью, называются БИОФЛАВОНОИДАМИ. Витамин Р образует с аскорбиновой кислотой окислительно-восстановительную систему, способствуя при этом реализации физиологического действия витамина С. Основной функцией витамина Р является регуляция сосудистой стойкости и проницаемости. В настоящее время препараты витамина нашли широкое применение в клинической практике не только для лечения авитаминозов, но и при многих других заболеваниях, сопровождающихся повышением сосудистой проницаемости и понижением их резистентности. Биофлавоноиды и аскорбиновая кислота оказывают влияние на сосудистую проницаемость, воздействуя на систему гиалуроновая кислота-гиалуронидаза. Ингибирующее действие биофлавоноиды оказывают на гиалуронидазу, на сукцинатдегидрогеназу и другие ферменты. Биофлавоноиды предохраняют аскорбиновую кислоту от окисления, а также восстанавливают дегидрооскарбиновую кислоту в аскорбиновую при участии глутатиона. Приведенные данные позволяют говорить о наличии связи в механизме физиологического действия биофлавоноидов и аскорбиновой кислоты. Характер этой связи заключается в способности флавоеоидных веществ усиливать биологическое действие аскорбиновой кислоты, по-видимому, благодаря их совместному участию в тканевом дыхании. Основными показателями Р- витаминной недостаточности до последнего времени считаются пониженная резистентность и повышенная проницаемость капилляров. Пониженная резистентность, или хрупкость, капилляров обнаруживается при механическом воздействии на них, которое может вызвать разрыв капиллярной стенки и образование точечных кровоизлияний- петехий. Понятие «повышенная проницаемость капилляров» означает нарушение структуры капиллярной стенки, в результате чего она становится проницаемой для более крупных, чем в норме, частиц, например белковых молекул или эритроцитов, Для определения резистентности капилляров у человека принята баночная проба Нестерова. ПАНТОТЕНОВАЯ КИСЛОТА Пантотеновая кислота широко распространена в природе. Она синтезируется зелеными растениями и микроорганизмами: дрожжами, многими бактериями, в том числе кишечной флорой млекопитающих, грибками. Особенно богаты пантотеновой кислотой печень животных,почки, яичный желток, икра, мясо. Специфическая функция пантотеновой кислоты в обмене веществ состоит в том, что она является незаменимой составной частью кофермента А. Этот кофермент играет фундаментальную роль в обмене веществ, принимая участие в осуществлении таких биохимических процессов, как окисление и биосинтез жирных кислот, окислительное декарбоксилирование кетокислот, в цикле лимонной кислоты, биосинтезе стероидов, нейтральных жиров, фосфатидов, порфиринов, ацетилхолина и др. Во всех этих процессах кофермент А функционирует в роли промежуточного акцептора и переносчика различных кислотных остатков (ацилов), образуя так называемые ацетилпроизводные кофермента А (ацетил-КоА). Причинами гиповитаминоза: подавление микробного синтеза или повышенная потребность в пантеновой кислоте (холод, физические напряжения, облучение, инфекционные заболевания и др). К основным проявления длительной недостаточности пантотеновой кислоты у человека и животных могут быть отнесены следующие: общее угнетение, вялость, анемия, замедление роста, потеря веса. К этому периоду отмечается развитие синдрома жжения ног (покалывание, онемения в пальцах ног, затем болт принимают жгучий характер), возможно развитие коматозного состояния и в далеко зашедших случаях, смерти. Могут быть нарушения со стороны желудочно-кишечного тракта: потеря аппетита, геморагические гастроэнтериты, колиты, появление язв в кишечнике, профузная диарея, изъязвляющиеся и некротизирующие глосситы. Развиваются изменения со стороны органов размножения: недоразвитие половых органов, рассасывание зародышей, стерильность, нарушение развития эмбрионов, возникновение уродств-микрофтальмии, гидроцефалии, гидронефрозов расщепление неба, дефектов кожи, сердечно-сосудистых аномалий; повреждения надпочечников; геморрагические изменения, атрофия и некроз, нарушения биосинтеза стероидных гормонов; торможение образования антител, с чем может быть связано резкое повышение чувствительности к инфекциям. Со стороны крови может быть нормоцитарная анемия, так как нарушается синтез гема; со стороны нервной системы-дегенеративные изменения. Развитие описанных симптомов в той или иной степени обусловлено выпадением в обмене веществ функции кофермента А, концентрация которого в тканях при недостатке пантотеновой кислоты резко снижена. Нарушения со стороны надпочечников, очевидно, обусловлены торможением биосинтеза холестерина и стероидных гормонов из-за недостатка КоА. Изменения со стороны нервной системы могут быть обусловлены нарушением биосинтеза ацетилхолина и фосфолипидов. Существенную роль в развитии симптомов недостаточности пантотеновой кислоты может играть нарушение процессов энергообразования и биосинтеза липидов. Развитие дерматитов может быть связано с нарушением обмена соединительной ткани, в частности, ацетилирования гексозаминов и биосинтеза мукополисахаридов. ФОЛИЕВАЯ КИСЛОТА. Фолаты широко распространены в природе. В тканях млекопитающих и птиц фолаты не образуются. Основным источником фолатов в питании человека является свежие овощи и зелень: салат, шпинат, капуста, морковь, помидоры, лук. Из продуктов животного происхождения наиболее богаты фолатами печень и почки, яичный желток, сыр. Хотя основным источником фолатов для человека является фолаты пищи, определенное значение удовлетворении потребности в этом витамине принадлежит и кишечной микрофлоре. Всасывание фолиевой кислоты осуществляется главным образом в двенадцатиперстной кишке и проксимальной части тонкого кишечника. Для всасывания фолатов в тонком кишечнике необходим фермент дегидрофолатредуктаза. Всосавшиеся фолаты поступают в печень, где накапливаются и превращаются под влиянием витамина В12 в активные формы (тетрагидрофолат). В теле взрослого человека содержится около 7-12 мг фолатов, из них в печени приблизительно 50-70% (5-7 мг). Фолиевая кислота метаболически неактивна. Важной химической особенностью является способность ее птеридинового кольца к восстановлению путем присоединения 4 водородных атомов с образованием тетрагидрофолиевой кислоты (ТГФК). Тетрагидрофолат является биологически активной формой фолатов. Точно установлено, что ее коферментные активной формой фолатов. Точно установлено, что ее коферментные функции непосредственно связаны с переносом одноуглеродных соединений, благодаря чему осуществляется их участие в биосинтезе таких важнейших предшественников нуклеиновых кислот, как пуриновые и пиримидиновые основания, а также участия в обмене ряда аминокислот: серина, гистидина, метионина, триптофана. ТГФК участвует в биосинтезе подвижной метильной группы и этим объясняется ее липотропное действие и клиническое применение для устранения жировой инфильтрации печени. Недостаточность фолатов у человека вызывает развитие мегалобластической анемии. Мегалобластическая анемия почти всегда обусловлена недостаточностью фолатов или витамина В12, или того и другого вместе. Недостаточность фолатов развивается более быстро, чем дефицит витамина В12. Тканевые запасы фолатов исчерпываются в течении 3-6 месяцев, тогда как запасы витамина В12 только через несколько лет. В связи с этим мегалобластическая анемия, как следствие фолатной недостаточности, встречается значительно чаще, чем анемия, вызванная гиповитаминозом В12. Типичные мегалобластические изменения в костном мозге могут наблюдаться во всех трех ростках: эритроцитарном, миелоидном и мегакариоцитарнок. Типичным является обнаружение малого количества мегалобластов. Кроме того, при недостаточности ТГФ в организме человека возникают кишечные расстройства и изменения слизистой рта в виде стоматита, гингивита, глоссита.
|
||||
Последнее изменение этой страницы: 2016-09-05; просмотров: 445; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.218.231.116 (0.011 с.) |