Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Общий вид линейных регрессионных уравнений с номинальными переменными. Их интерпретацияСодержание книги
Поиск на нашем сайте
Итак, предположим, что у нас имеется некоторые номинальные признаки Y (зависимый; пока, до обсуждения некоторых вопросов, связанных с интерпретацией результатов регрессионного анализа, будем считать этот признак номинальным) и Х1, Х2,..., Хn (независимые). Пусть Y принимает k значений, а каждый признак Хi - li значений. Предположим также, что осуществлена дихотомизация исходных данных, в результате чего независимый признак “превращен” в дихотомические признаки Y1, Y2,..., Yk, а каждый признак Хi - в дихотомические , ,..., . Будем полагать, что в качестве “отбрасываемого признака фигурирует последний признак из каждого только что приведенного набора. Применение техники номинального регрессионного анализа к такого рода данным означат расчет k уравнений вида: Y1 = f1(Х1, Х2,..., Хn) = = f1(, ,..., , , ,..., ,..., , ,..., ) Y2 = f2(Х1, Х2,..., Хn) = f2(, ,..., , , ,..., ,..., , ,..., ) Yk = f k(Х1, Х2,...,Хn) = fk (, ,..., , , ,..., ,..., , ,..., ) отвечают Х1 отвечают Х2 отвечают Хn
Не хотим далее “мучить” читателя индексами и поэтому все дальнейшие рассуждения будем вести в предположении, что рассматривается только одна градация зависимого признака с отвечающей ей дихотомической переменной Y и один принимающий три значения независимый признак Х с отвечающими ему дихотомическими переменными Х1, Х2, Х3. Надеемся, что необходимые обобщения читатель сделает самостоятельно. Таким образом, будем полагать, что искомая зависимость имеет вид: Y = f(Х1, Х2 ) = а 0 + а1 ´ Х 1+ а 2 ´ Х2 (11) Например, предположим, что Y, Х 1, Х2 – это дихотомические переменные, отвечающие, соответственно, свойствам “быть торговцем”, “быть русским” и “быть грузином” (напомним, что дихотомическую переменную, отвечающую свойству “быть чукчей”, мы при построении уравнения отбрасываем). Процесс поиска подобной зависимости состоит в реализации техники линейного регрессионного анализа. Коэффициенты уравнения регрессии, найденные по всем правилам классического регрессионного анализа, выражаются довольно сложными формулами, включающими в себя такие (вроде бы "запретные" для номинальных данных) статистики, как среднее арифметическое, дисперсия, частные коэффициенты корреляции и т.д., Однако, как мы уже упоминали, их оказывается возможным проинтерпретировать вполне разумным, понятным любому социологу, способом – как некоторые условные частоты. Опишем эту интерпретацию. Сначала проинтерпретируем коэффициент а0 (свободный член уравнения (5)). В силу самой сути уравнения регрессии, подставив в него произвольные значения независимых переменных Х 1, Х2, слева от знака равенства мы получим среднее значение Y, которое отвечает совокупности респондентов с рассматриваемыми значениями предикторов. Рассмотрим только тех людей, которым соответствует отброшенная нами национальность, – чукчей. Ясно, что для них Х1 = Х2 = 0. Подставив эти значения в уравнение регрессии, получим соотношение Y = а0 Таким образом, интерпретируемый коэффициент а 0 равен среднему арифметическому значению зависимой переменной для отброшенной категории респондентов, в данном случае – для чукчей. Если бы Y был интервальной переменной, то тем самым интерпретация свободного члена уравнения регрессии была бы окончена. Но наш Y – дихотомическая переменная, отвечающая свойству “быть торговцем”. В соответствии с описанной выше интерпретацией среднего арифметического значения дихотомического признака, смысл а 0 сводится к тому. Что это - доля чукчей, работающих торговцами (говоря формально – доля отброшенной категории респондентов, обладающих единичным значением зависимого признака). Перейдем к интерпретации коэффициента а1 из уравнения (11). Рассмотрим только русских. Нетрудно видеть, что для них Х 1 = 1 и Х2 = 0. Подставим эти значения в уравнение. Получим соотношение: Y = а0 + а1. Учитывая осуществленную выше интерпретацию свободного члена уравнения, применительно к нашему примеру, можно сказать, что а1 – это тот “довесок”, который надо прибавить к доле чукчей, являющихся торговцами, чтобы получить долю русских, занимающихся этим делом. Аналогична интерпретация а2: это та величина, которую надо прибавить к доле торговцев среди чукчей, чтобы получить аналогичную долю среди грузин. Приведем пример. Пусть уравнение, найденное с помощью линейного регрессионного анализа имеет вид: Y = 0,3 – 0,1 Х1 + 0,6 Х2 (12) Его коэффициенты можно интерпретировать как условные частоты: доля торговцев среди чукчей равна 0,3, среди русских – (0,3 + (- 0,1)) = 0,2, а среди грузин – (0.3 + 0,6) = 0,9. Чтобы еще более стал ясен смысл коэффициентов уравнения регрессии, рассмотрим, во что это уравнение превращается в случае изучения двух дихотомических признаков. Приведем пример из [Типология и классификация..., 1982. С. 260 - 266]. Пусть Х - семейное положение (два значения: X1 – женат, X2 – неженат), Y – посещение кинотеатра (Y1 – посещает, Y2 – не посещает; здесь мы отвлекаемся от точного смысла этих слов: означает ли выражение “не посещает” то, что респондент никогда не ходил в кино, или же что он не был там в течение последних 5-ти лет и т.д.). Пусть таблица сопряженности, отвечающая нашим признакам, имеет вид: Таблица 29.
|
||||
Последнее изменение этой страницы: 2016-09-05; просмотров: 333; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.129.71.13 (0.008 с.) |