Физические и химические свойства азотной кислоты. Нитраты. Медико – биологическое значение азота и его соединений. 





Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Физические и химические свойства азотной кислоты. Нитраты. Медико – биологическое значение азота и его соединений.



Азо́тная кислота́ (HNO3), — сильная одноосновная кислота. Твёрдая азотная кислота образует две кристаллические модификации смоноклинной и ромбической решётками.

Азотная кислота смешивается с водой в любых соотношениях. В водных растворах она практически полностью диссоциирует на ионы. Образует с водой азеотропную смесь с концентрацией 68,4 % и tкип120 °C при атмосферном давлении. Известны два твёрдыхгидрата: моногидрат (HNO3·H2O) и тригидрат (HNO3·3H2O).

Физические и физико-химические свойства

Азот в азотной кислоте четырёхвалентен, степень окисления +5. Азотная кислота — бесцветная, дымящая на воздухе жидкость, температура плавления −41,59 °C, кипения +82,6 °C с частичным разложением. Растворимость азотной кислоты в воде не ограничена. Водные растворы HNO3 с массовой долей 0,95-0,98 называют «дымящей азотной кислотой», с массовой долей 0,6-0,7 — концентрированной азотной кислотой. С водой образует азеотропную смесь (массовая доля 68,4 %, d20 = 1,41 г/см, Tкип = 120,7 °C)

При кристаллизации из водных растворов азотная кислота образует кристаллогидраты:

· моногидрат HNO3·H2O, Tпл = −37,62 °C

· тригидрат HNO3·3H2O, Tпл = −18,47 °C

Твёрдая азотная кислота образует две кристаллические модификации:

· моноклинная, пространственная группа P 21/a, a = 1,623 нм, b = 0,857 нм, c = 0,631, β = 90°, Z = 16;

· ромбическая

Химические свойства

Высококонцентрированная HNO3 имеет обычно бурую окраску вследствие происходящего на свету процесса разложения:

При нагревании азотная кислота распадается по той же реакции. Азотную кислоту можно перегонять (без разложения) только при пониженном давлении (указанная температура кипения при атмосферном давлении найдена экстраполяцией).

Золото, некоторые металлы платиновой группы и тантал инертны к азотной кислоте во всём диапазоне концентраций, остальные металлы реагируют с ней, ход реакции при этом определяется её концентрацией.

HNO3 как сильная одноосновная кислота взаимодействует:

а) с основными и амфотерными оксидами:

б) с основаниями:

в) вытесняет слабые кислоты из их солей:

При кипении или под действием света азотная кислота частично разлагается:

Азотная кислота в любой концентрации проявляет свойства кислоты-окислителя, при этом азот восстанавливается до степени окисления от +4 до −3. Глубина восстановления зависит в первую очередь от природы восстановителя и от концентрации азотной кислоты. Как кислота-окислитель, HNO3 взаимодействует:

а) с металлами, стоящими в ряду напряжений правее водорода:

Концентрированная HNO3

Разбавленная HNO3

б) с металлами, стоящими в ряду напряжений левее водорода:

Все приведенные выше уравнения отражают только доминирующий ход реакции. Это означает, что в данных условиях продуктов данной реакции больше, чем продуктов других реакций, например, при взаимодействии цинка с азотной кислотой (массовая доля азотной кислоты в растворе 0,3) в продуктах будет содержаться больше всего NO, но также будут содержаться (только в меньших количествах) и NO2, N2O, N2 и NH4NO3.

Единственная общая закономерность при взаимодействии азотной кислоты с металлами: чем более разбавленная кислота и чем активнее металл, тем глубже восстанавливается азот:

увеличение концентрации кислоты увеличение активности металла

Продукты взаимодействия железа с HNO3 разной концентрации

С золотом и платиной азотная кислота, даже концентрированная не взаимодействует. Железо, алюминий, хром холодной концентрированной азотной кислотой пассивируются. С разбавленной азотной кислотой железо взаимодействует, причем в зависимости от концентрации кислоты образуются не только различные продукты восстановления азота, но и различные продукты окисления железа:

Азотная кислота окисляет неметаллы, при этом азот обычно восстанавливается до NO или NO2:

и сложные вещества, например:

Некоторые органические соединения (например амины, скипидар) самовоспламеняются при контакте с концентрированной азотной кислотой.

Азотная кислота

Некоторые металлы (железо, хром, алюминий, кобальт, никель, марганец, бериллий), реагирующие с разбавленной азотной кислотой, пассивируются концентрированной азотной кислотой и устойчивы к её воздействию.

Смесь азотной и серной кислот носит название «меланж».

Азотная кислота широко используется для получения нитросоединений.

Смесь трех объёмов соляной кислоты и одного объёма азотной называется «царской водкой». Царская водка растворяет большинство металлов, в том числе золото и платину. Её сильные окислительные способности обусловлены образующимся атомарным хлором и хлоридом нитрозила:

Нитраты

Азотная кислота является сильной кислотой. Её соли — нитраты — получают действием HNO3 на металлы, оксиды, гидроксиды или карбонаты. Все нитраты хорошо растворимы в воде. Нитрат-ион в воде не гидролизуется.

Соли азотной кислоты при нагревании необратимо разлагаются, причём состав продуктов разложения определяется катионом:

а) нитраты металлов, стоящих в ряду напряжений левее магния:

б) нитраты металлов, расположенных в ряду напряжений между магнием и медью:

в) нитраты металлов, расположенных в ряду напряжений правее ртути:

г) нитрат аммония:

Нитраты в водных растворах практически не проявляют окислительных свойств, но при высокой температуре в твердом состоянии являются сильными окислителями, например, при сплавлении твердых веществ:

Цинк и алюминий в щелочном растворе восстанавливают нитраты до NH3:

Соли азотной кислоты — нитраты — широко используются как удобрения. При этом практически все нитраты хорошо растворимы в воде, поэтому в виде минералов их в природе чрезвычайно мало; исключение составляют чилийская (натриевая) селитра и индийская селитра (нитрат калия). Большинство нитратов получают искусственно.

С азотной кислотой не реагируют стекло, фторопласт-4.

Азот. Это один из важнейших биогенных элементов. Содержание его в живых организмах в расчёте на сухое вещество составляет примерно 3%. Азот входит в состав аминокислот, белков, нуклеотидов, нуклеиновых кислот, биогенных аминов и т.д.

Мы живет в атмосфере азота (объёмная доля азота в воздухе составляет 78%), обогащенной кислородом и в очень малых количествах – другими элементами. Без азот трудно представить себе жизнь на Земле. Азот и жизнь – понятия неразделимые. Жизнь во многом обязана именно азоту, а азот своим происхождением и существованием в биосфере обязан жизненным процессам.

Молекулярный азот участия в обмене веществ не принимает. Человек использует азот органических соединений.

Азот – не только носитель жизни. Азотные соединения, особенно нитраты, вредны для орг8анизма и могут быть причиной отравлений.

В медицине применяются:

N2O – оксид азота (I), или «веселящий газ», в смеси с кислородом используется в качестве наркотического средства;

NH4OH – водный раствор аммиака (нашатырный спирт), используется для возбуждения дыхания и выведения больных из обморочного состояния.

30. Характеристика элемента 15 Р. Свободный фосфор: аллотропия, физические и химические свойства, получение.

ФОСФОР (от греч. phosphoros - светоносный; лат. Phosphorus) P, хим. элемент V гр. периодич. системы; ат. номер 15, ат. м. 30,97376. Имеет один устойчивый нуклид 31P. Конфигурация внеш. электронной оболочки атома 3s23p3;степени окисления -3, +3 и +5; энергия последоват. ионизации при переходе от Р° до P5+ (эВ): 10,486, 19,76, 30,163, 51,36, 65,02; сродство к электрону 0,6 эВ; электроотрицательность по Полингу 2,10; атомный радиус 0,134 нм, ионные радиусы (в скобках указаны координац. числа) 0,186 нм для P3- , 0,044 нм (6) для P3+, 0,017 нм (4), 0,029 нм (5), 0,038 нм (6) для P5+.

Среднее содержание фосфора в земной коре 0,105% по массе, в воде морей и океанов 0,07 мг/л. Известно ок. 200 фосфорных минералов, все они представляют собой фосфаты. Из них важнейший - апатит, к-рый является основой фосфоритов. Практич. значение имеют также монацит CePO4, ксенотим YPO4, амблигонит LiAlPO4(F, ОН), трифилин Li(Fe, Mn)PO4, торбернит Cu(UO2)2(PO4)2· 12H2O, отунит Ca(UO2)2(PO4)2 x x 10H2O, вивианит Fe3(PO4)2· 8H2O, пироморфит Рb5(РО4)3С1, бирюза СuА16(РО4)4(ОН)8· 5Н2О.

Свойства. Известно св. 10 модификаций фосфора, из них важнейшие - белый, красный и черный фосфор (техн. белый фосфор наз. желтым фосфором). Единой системы обозначений модификаций фосфора нет. Некоторые св-ва важнейших модификаций сопоставлены в табл. Термодинамически устойчив при нормальных условиях кристаллич. черный фосфор (P I). Белый и красный фосфоры мета-стабильны, но вследствие малой скорости превращения могут практически неограниченное время сохраняться при нормальных условиях.

Получение

Фосфор получают из апатитов или фосфоритов в результате взаимодействия с коксом и кремнезёмом при температуре 1600 °С:

Образующиеся пары фосфора конденсируются в приёмнике под водой в аллотропическую модификацию в виде белого фосфора. Вместо фосфоритов восстановлению можно подвергнуть и другие соединения, например, метафосфорную кислоту:

Физические свойства

Элементарный фосфор в обычных условиях представляет собой несколько устойчивых аллотропических модификаций; вопросаллотропии фосфора сложен и до конца не решён. Обычно выделяют четыре модификации простого вещества — белый, красный, чёрный и металлический фосфор. Иногда их ещё называют главными аллотропными модификациями, подразумевая при этом, что все остальные являются разновидностью указанных четырёх. В обычных условиях существует только три аллотропических модификации фосфора, а в условиях сверхвысоких давлений — также металлическая форма. Все модификации различаются по цвету, плотности и другим физическим характеристикам; заметна тенденция к резкому убыванию химической активности при переходе от белого к металлическому фосфору и нарастанию металлических свойств.

Белый фосфор представляет собой белое вещество (из-за примесей может иметь желтоватый оттенок). По внешнему виду он очень похож на очищенный воск или парафин, легко режется ножом и деформируется от небольших усилий.

Белый фосфор имеет молекулярное строение; формула P4. Отливаемый в инертной атмосфере в виде палочек (слитков), он сохраняется в отсутствие воздуха под слоем очищенной воды или в специальных инертных средах.

Легкорастворим в органических растворителях. Растворимостью белого фосфора в сероуглероде пользуются для промышленной очистки его от примесей. Плотность белого фосфора из всех его модификаций наименьшая и составляет около 1823 кг/м³. Плавится белый фосфор при 44,1 °C. В парообразном состоянии происходит диссоциация молекул фосфора.

Химически белый фосфор чрезвычайно активен. Например, он медленно окисляется кислородом воздуха уже при комнатной температуре и светится (бледно-зелёное свечение). Явление такого рода свечения вследствие химических реакций окисления называется хемилюминесценцией (иногда ошибочно фосфоресценцией).

Белый фосфор не только активен химически, но и весьма ядовит (вызывает поражение костей, костного мозга, некроз челюстей). Летальная доза белого фосфора для взрослого мужчины составляет 0,05—0,1 г.

Жёлтый фосфор. Неочищенный белый фосфор обычно называют «жёлтый фосфор». Сильно ядовитое (ПДК в атмосферном воздухе 0,0005 мг/м³), огнеопасное кристаллическое вещество от светло-жёлтого до тёмно-бурого цвета. Удельный вес 1,83 г/см³, плавится при +34 °C, кипит при +280 °C. В воде не растворяется, на воздухе легко окисляется и самовоспламеняется. Горит ослепительным ярко-зеленым пламенем с выделением густого белого дыма — мелких частичек декаоксида тетрафосфора P4O10[5].

Так как фосфор реагирует с водой лишь при температуре свыше 500 градусов по цельсию, то для тушения фосфора используют воду в больших количествах (для снижения температуры очага возгорания и перевода фосфора в твердое состояние) или раствор сульфата меди (медного купороса), после гашения фосфор засыпают влажным песком. Для предохранения от самовозгорания жёлтый фосфор хранится и перевозится под слоем воды (раствора хлорида кальция).

Красный фосфор — это более термодинамически стабильная модификация элементарного фосфора. Впервые он был получен в 1847 году в Швеции австрийским химиком А. Шрёттером при нагревании белого фосфора при 500 °С в атмосфере угарного газа (СО) в запаянной стеклянной ампуле.

Красный фосфор имеет формулу Рn и представляет собой полимер со сложной структурой. В зависимости от способа получения и степени дробления, красный фосфор имеет оттенки от пурпурно-красного до фиолетового, а в литом состоянии - тёмно-фиолетовый с медным оттенком, имеет металлический блеск. Химическая активность красного фосфора значительно ниже, чем у белого; ему присуща исключительно малая растворимость. Растворить красный фосфор возможно лишь в некоторых расплавленных металлах (свинец и висмут), чем иногда пользуются для получения крупных его кристаллов. Так, например, немецкий физико-химик И. В. Гитторф в 1865 году впервые получил прекрасно построенные, но небольшие по размеру кристаллы (фосфор Гитторфа). Красный Фосфор на воздухе не самовоспламеняется, вплоть до температуры 240—250 °С (при переходе в белую форму во время возгонки), но самовоспламеняется при трении или ударе, у него полностью отсутствует явление хемилюминесценции. Нерастворим в воде, а также в бензоле, сероуглероде и других, растворим в трибромиде фосфора. При температуре возгонки красный фосфор превращается в пар, при охлаждении которого образуется в основном белый фосфор.

Ядовитость его в тысячи раз меньше, чем у белого, поэтому он применяется гораздо шире, например, в производстве спичек (составом на основе красного фосфора покрыта тёрочная поверхность коробков). Плотность красного фосфора также выше, и достигает 2400 кг/м³ в литом виде. При хранении на воздухе красный фосфор в присутствии влаги постепенно окисляется, образуя гигроскопичный оксид, поглощает воду и отсыревает («отмокает»), образуя вязкую фосфорную кислоту; поэтому его хранят в герметичной таре. При «отмокании» — промывают водой от остатков фосфорных кислот, высушивают и используют по назначению.

Чёрный фосфор — это наиболее стабильная термодинамически и химически наименее активная форма элементарного фосфора. Впервые чёрный фосфор был получен в 1914 годуамериканским физиком П. У. Бриджменом из белого фосфора в виде чёрных блестящих кристаллов, имеющих высокую (2690 кг/м³) плотность. Для проведения синтеза чёрного фосфора Бриджмен применил давление в 2·109 Па (20 тысяч атмосфер) и температуру около 200 °С. Начало быстрого перехода лежит в области 13 000 атмосфер и температуре около 230 °С.

Чёрный фосфор представляет собой чёрное вещество с металлическим блеском, жирное на ощупь и весьма похожее на графит, и с полностью отсутствующей растворимостью в воде или органических растворителях. Поджечь чёрный фосфор можно, только предварительно сильно раскалив в атмосфере чистого кислорода до 400 °С. Чёрный фосфор проводит электрический ток и имеет свойства полупроводника. Температура плавления чёрного фосфора 1000 °С под давлением 18·105 Па.

Металлический фосфор. При 8,3·1010 Па чёрный фосфор переходит в новую, ещё более плотную и инертную металлическую фазу с плотностью 3,56 г/см³, а при дальнейшем повышении давления до 1,25·1011Па — ещё более уплотняется и приобретает кубическую кристаллическую решётку, при этом его плотность возрастает до 3,83 г/см³. Металлический фосфор очень хорошо проводит электрический ток.

Химические свойства

Химическая активность фосфора значительно выше, чем у азота. Химические свойства фосфора во многом определяются его аллотропной модификацией. Белый фосфор очень активен, в процессе перехода к красному и чёрному фосфору химическая активность резко снижается. Белый фосфор на воздухе светится в темноте, свечение обусловлено окислением паров фосфора до низших оксидов.

В жидком и растворенном состоянии, а также в парах до 800 °С фосфор состоит из молекул Р4. При нагревании выше 800 °С молекулы диссоциируют: Р4 = 2Р2. При температуре выше 2000 °С молекулы распадаются на атомы.

Взаимодействие с простыми веществами

Фосфор легко окисляется кислородом:

(с избытком кислорода)

(при медленном окислении или при недостатке кислорода)

Взаимодействует со многими простыми веществами — галогенами, серой, некоторыми металлами, проявляя окислительные и восстановительные свойства:

с металлами — окислитель, образует фосфиды:

фосфиды разлагаются водой и кислотами с образованием фосфина

с неметаллами — восстановитель:

Не взаимодействует с водородом.

Взаимодействие с водой

Взаимодействует с водяным паром при температуре выше 500 °С, протекает реакция диспропорционирования с образованием фосфина и фосфорной кислоты:

Взаимодействие со щелочами

В холодных концентрированных растворах щелочей также медленно протекает реакция диспропорционирования:

[править]Восстановительные свойства

Сильные окислители превращают фосфор в фосфорную кислоту:

Реакция окисления фосфора происходит при поджигании спичек, в качестве окислителя выступает бертолетова соль:

 





Последнее изменение этой страницы: 2016-09-05; просмотров: 2813; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.85.80.239 (0.01 с.)