ТОП 10:

Виды и основные функции мышц



МЫШЦА

Виды и основные функции мышц

 

Мышцы у всех высших животных являются важнейшими исполнительными (рабочими) органами – эффекторами.

Все виды произвольных движений – ходьба, бег, плавание, речь, письмо, мимика, а также движения глазных яблок и слуховых косточек, дыхание и глотание основаны на способности скелетных мышц быстро сокращаться, приводя в движение соединенные с ними кости или другие структуры (глазное яблоко, кожу).

Все виды непроизвольных движений – сокращения сердца, перистальтика желудка и кишечника, изменение тонуса кровеносных сосудов, сохранение пластического тонуса мочевого пузыря обусловлены сокращением, соответственно, сердечной и гладких мышц, а также мышц нейрального происхождения – суживающих и расширяющих зрачок.

Скелетные мышцы

Иннервация скелетных мышц

 

Иннервация скелетных мышц осуществляется α-мотонейронами спинного мозга или передних отделов ствола головного мозга. Аксон мотонейрона проходит в составе периферических нервов до мышцы, внутри которой разветвляется на множество концевых веточек. Каждая концевая веточка контактирует на одном мышечном волокне, образуя нервно-мышечный холинергический синапс. Результатом выброса его медиатора (ацетилхолина) является возникновение электрического потенциала концевой пластинки, способного перерастать в ПД мышечного волокна.

Комплекс, включающий один мотонейрон и иннервируемые ими мышечные волокна, сокращающиеся одновременно, называют двигательной единицей(ДЕ).

 

У человека двигательные единицы включают от 13-20 волокон (в мышцах кисти, глаза) до 1500-2500 волокон (икроножные мышцы, мышцы спины). В свою очередь, несколько мотонейронов, иннервирующих одну и ту же мышцу, образуют мотонейронный пул. В его состав могут входить мотонейроны нескольких соседних сегметов. В связи с тем, что возбудимость мотонейронов одного пула неодинакова, при слабых раздражениях возбуждается только часть из них. Это влечет за собой сокращение лишь части мышечных волокон (неполное сокращение мышцы). С усилением раздражения в реакцию вовлекаются все большее количество двигательных единиц и в итоге все мышечные волокна мышцы сокращаются (максимальное сокращение).

 

Классификация двигательных единиц

По морфофункциональным свойствам двигательные единицы делятся на 3 типа:

1. Медленные неутомляемые ДЕ. Мотонейроны имеют наиболее низкий порог активации, способны поддерживать устойчивую частоту разрядов в течение десятков минут (т.е. неутомляемы). Аксоны обладают небольшой толщиной, низкой скоростью проведения возбуждения, иннервируют небольшую группу мышечных волокон. Мышечные волокна развивают небольшую силу при сокращении в связи с наличием в них наименьшего количества сократительных белков – миофибрилл. Это так называемые «красные волокна» (цвет обусловлен хорошим развитием капиллярной сети и небольшим количеством миофибрилл). Скорость сокращения этих волокон в 1,5 – 2 раза меньше, чем быстрых. Они неутомляемы благодаря хорошо развитой капиллярной сети, большому количеству митохондрий и высокой активности окислительных ферментов.

2. Быстрые, легко утомляемые ДЕ. Имеют наиболее крупный мотонейрон, обладающий наиболее высоким порогом возбуждения, не способны в течение длительного времени поддерживать устойчивую частоту разрядов (утомляемые). Аксоны толстые, с большой скоростью проведения нервных импульсов, иннервирует много мышечных волокон. Мышечные волокна содержат большое число миофибрилл, поэтому при сокращении развивают большую силу. Благодаря высокой активности ферментов скорость сокращения высокая. Эти волокна быстро утомляются, т.к. содержат меньше, по сравнению с медленными, митохондрий и окружены меньшим количеством капилляров.

3. Быстрые, устойчивые к утомлению. Сильные, быстро сокращающиеся волокна, обладающие большой выносливостью благодаря возможности использования аэробных и анаэробных процессов получения энергии. Волокна 2 и 3 типов называются «белыми волокнами» из-за большого содержания миофибрилл и низкого – миоглобина.

 

Сравнение медленных и быстрых мышечных волокон

 

Скелетная мышца человека состоит из волокон 3 типов, однако их соотношение может значительно отличаться в зависимости от функции мышцы, а также врожденной и приобретенной индивидуальности. Чем больше в мышцах белых волокон, тем лучше человек приспособлен к выполнению работы, требующей большой скорости и силы. Преобладание красных волокон обеспечивает выносливость при выполнении длительной работы.

 

Строение скелетной мышцы

 

Скелетная мышца состоит из множества мышечных волокон, которые расположены пучками в общем соединительнотканном футляре и крепятся к сухожилиям, связанным со скелетом. Каждое мышечное волокно – это тонкое (от 10 до 100 мкм) вытянутое в длину (от 5 до 400мм) многоядерное образование – симпласт.

Мембраны мышечного волокна сходна по строению с нервной, но она дает регулярные Т-образные впячивания. Внутри мышечного волокна параллельно мембране располагается разветвленная замкнутая система трубочек – саркоплазматический ретикулум – внутриклеточное депо Ca2+. Т-система и прилегающий к ней СР – аппарат передачи возбуждения с мембраны мышечного волокна на сократительные структуры (миофибриллы). В саркоплазме мышечного волокна можно увидеть поперечные чередующиеся светлые и темные участки – соответственно, J- (изотропные) и А-(анизотропные) диски. В соседних миофибриллах одноименные диски расположены на одном уровне, что придает волокну поперечную исчерченность.Комплекс из одного темного и двух прилежащих к нему половин светлых дисков, ограниченных поперечными Z-пластинками, называют саркомером.

Каждая миофибрилла состоит их множества параллельно лежащих толстых (миозиновых) и тонких (актиновых) белковых нитей – миофиламентов. По сечению волокна толстые и тонкие нити располагаются высокоорганизованно в узлах гексагональной решетки. Каждая толстая нить окружена шестью тонкими, каждая из тонких нитей частично входит в окружение трех соседних толстых. Миозиновые нити имеют отходящие от них поперечные выступы с головками, состоящими примерно из 150 молекул миозина. Актиновая нить состоит из двух закрученных одна вокруг другой цепочек (подобно скрученным ниткам бус) молекул актина. На нитях актина расположены молекулы тропонина, а в желобках между двумя нитями актина лежат нити тропомиозина.

 

Механика мышцы. Физические свойства и режимы мышечных сокращений

Физические свойства скелетных мышц

1. Растяжимость- способность мышцы изменять свою длину под действием растягивающей ее силы.

2. Эластичность - способность мышцы принимать свою первоначальную длину после прекращения действия растягивающей или деформирующей силы.

3. Сила мышцы. Она определяется максимальным грузом, который мышца в состоянии поднять. Удельная сила - максимальный груз, который мышца в состоянии поднять, делят на число квадратных сантиметров ее физиологического поперечного сечения.

4. Способность мышцы совершать работу. Работа мышцы определяется произведением величины поднятого груза на высоту подъема. Работа мышцы постепенно увеличивается с увеличением груза, но до определенного предела, после которого увеличение груза приводит к уменьшению работы, т. к. снижается высота подъема груза. Следовательно, максимальная работа мышцей производится при средних величинах нагрузок (закон средних нагрузок).

 

Режимы мышечных сокращений

Различают изотонический, изометрический и смешанный режимы сокращения мышц.

При изотоническом сокращении мышцы происходит изменение ее длины, а напряжение остается постоянным. Такое сокращение происходит в том случае, когда мышца не перемещает груз. В естественных условиях близкими к изотоническому типу сокращений являются сокращения мышц языка.

При изометрическомсокращении длина мышечных волокон остается постоянной, меняется напряжение мышцы. Такое сокращение мышцы можно получить при попытке поднять непосильный груз.

В целом организме сокращения мышц никогда не бывают чисто изотоническим или изометрическим, они всегда имеют смешанный характер, т. е. происходит изменение и длины, и напряжения мышцы. Такой режим сокращения называется ауксотоническим если преобладает напряжение мышцы, или ауксометрическим если преобладает укорочение.

 

Системы восстановления АТФ

Восстановление АТФ осуществляется сразу же после ее расщепления до АДФ. Этот процесс осуществляется при участии 3 энергетических систем.

1) фосфогенная система, где используется энергия креатинфосфата (система АТФ-КрФ). Эта система обладает наибольшей скоростью действия, мощностью, но незначительной емкостью, поэтому используется в самом начале работы или при работе максимальной мощности (но не более 5 с). Это анаэробный процесс, т.е. он протекает без участия кислорода.

2)система окислительного фосфорилирования разворачивается по мере удлинения времени работы (через 2-3 мин). Если интенсивность работы мышц не максимальна, то их потребности в кислороде удовлетворяются полностью. Поэтому работа может выполняться на протяжении многих часов. Необходимая для ресинтеза АТФ энергия поступает в результате окисления жиров и углеводов, причем чем больше интенсивность, тем меньше вклад жиров. Это аэробный процесс.

3) гликолитическая система, где восстановление АТФ идет за счет энергии анаэробного расщепления углеводов (гликогена, глюкозы) до молочной кислоты. Во время этой реакции скорость образования АТФ в 2-3 раза выше, а механическая работа в 2-3 раза больше, чем при длительной аэробной работе. Однако, емкость гликолитической системы в тысячи раз меньше, чем окислительной (хотя в 2,5 раза больше фосфогенной. Поэтому такая система может обеспечивать работу на время от 20 с до 1-2 мин. и заканчивается она значительным накоплением молочной кислоты.

 

Тепловой выход мышцы

Тепловой выход мышцы (Q) сложен. Во-первых, существует выход теплоты при изометрическом напряжении мышцы, при задержке ее сокращения стопо­ром. Этот выход называют теплотой активации. Если на фоне этого состояния мышца с грузом освобождается от стопора и, сокращаясь, поднимает груз, то она выделяет дополнительную теплоту — теплоту укорочения, пропорциональную механической работе (эффект Фенна). По-видимому, пере­мещение нитей с подключением в работу все новых (заряженных энергией) мостиков способствует высвобождению дополнительной энергии (и механиче­ской, и тепловой).

В условиях свободного подъема груза теплота активации (соответстствующая фазе напряжения сухожилия) и теплота укорочения сливаются, образуя так называемое начальное теплообразование. После сокращения (одиночного или краткого тетануса) в мышце возникает задержанное теплообразование, которое связано с процессами, обеспечивающими ресинтез АТФ, оно длится секунды и минуты. Если рассчитывать КПД мышцы по начальному теплообра­зованию, то он составит примерно 50-60% (для оптимальных условий стиму­ляции и нагрузки). Если же вести расчет КПД исходя из видов теплопродук­ции, связанных с данной механической работой, то КПД составит примерно 20-30% (КПД мышц млекопитающих падает при адаптации к холоду, что способствует усилению теплопродукции в организме).

 

 

Гладкие мышцы

Кардиомиоциты позвоночных

 

Сердце у позвоночных построено из вытянутых одноядерных мышечных клеток — кардиомиоцитов,обладающих поперечной исчерченностью. Важная особенность строения мышцы сердца заключается в том, что кардиомиоциты связаны между собой низкоомными электрическими контактами — запирающими фасциями (нексусами). Таким образом, масса кардиомиоцитов в конечном счете образует функциональную единицу, что важно для выполнения сердцем функции насоса.

Электрическое раздражение любой точки сердца в силу этих связей вызывает электрическую и сократительную реакцию всех его мышечных клеток. Поэтому сердце (в отличие от скелетной мышцы, включающей много независимых двигательных единиц) отвечает на электрическое раздражение как единица по правилу «все или ничего». Т.е сердечная мышца не отве­чает на подпороговые раздражения, а на пороговое и надпороговое реаги­рует как одиночное исчерченное мышечное волокно — сокращением мак­симальной амплитуды.

Эти особенности строения обусловливают основные свойства сердечной мышцы – автоматию, возбудимость и сократимость.

 

МЫШЦА

Виды и основные функции мышц

 

Мышцы у всех высших животных являются важнейшими исполнительными (рабочими) органами – эффекторами.

Все виды произвольных движений – ходьба, бег, плавание, речь, письмо, мимика, а также движения глазных яблок и слуховых косточек, дыхание и глотание основаны на способности скелетных мышц быстро сокращаться, приводя в движение соединенные с ними кости или другие структуры (глазное яблоко, кожу).

Все виды непроизвольных движений – сокращения сердца, перистальтика желудка и кишечника, изменение тонуса кровеносных сосудов, сохранение пластического тонуса мочевого пузыря обусловлены сокращением, соответственно, сердечной и гладких мышц, а также мышц нейрального происхождения – суживающих и расширяющих зрачок.

Скелетные мышцы

Иннервация скелетных мышц

 

Иннервация скелетных мышц осуществляется α-мотонейронами спинного мозга или передних отделов ствола головного мозга. Аксон мотонейрона проходит в составе периферических нервов до мышцы, внутри которой разветвляется на множество концевых веточек. Каждая концевая веточка контактирует на одном мышечном волокне, образуя нервно-мышечный холинергический синапс. Результатом выброса его медиатора (ацетилхолина) является возникновение электрического потенциала концевой пластинки, способного перерастать в ПД мышечного волокна.

Комплекс, включающий один мотонейрон и иннервируемые ими мышечные волокна, сокращающиеся одновременно, называют двигательной единицей(ДЕ).

 

У человека двигательные единицы включают от 13-20 волокон (в мышцах кисти, глаза) до 1500-2500 волокон (икроножные мышцы, мышцы спины). В свою очередь, несколько мотонейронов, иннервирующих одну и ту же мышцу, образуют мотонейронный пул. В его состав могут входить мотонейроны нескольких соседних сегметов. В связи с тем, что возбудимость мотонейронов одного пула неодинакова, при слабых раздражениях возбуждается только часть из них. Это влечет за собой сокращение лишь части мышечных волокон (неполное сокращение мышцы). С усилением раздражения в реакцию вовлекаются все большее количество двигательных единиц и в итоге все мышечные волокна мышцы сокращаются (максимальное сокращение).

 







Последнее изменение этой страницы: 2016-08-26; Нарушение авторского права страницы

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.235.77.252 (0.007 с.)