Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Калий содержится во всех растениях, особенно много калия в плодах. Природным источником калия являются минеральные соли.↑ Стр 1 из 11Следующая ⇒ Содержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
СОДЕРЖАНИЕ Макроэлементы............................................. 3 Микроэлементы.............................................18 МАКРОЭЛЕМЕНТЫ Калий - химический элемент I группы с атомным номером 19 в периодической системе. Калий представляет собой серебристо-белый мягкий металл и принадлежит к семейству одновалентных щелочных металлов. Известны два изотопа калия: 39К и 41К. В природе калий встречается только в соединениях с другими элементами. Например в морской воде, а также во многих минералах. Он очень быстро окисляется на воздухе и очень легко вступает в химические реакции, особенно с водой, образуя щелочь. Во многих отношениях химические свойства калия очень близки к натрию, но с точки зрения биологической функции и использования их клетками живых организмов они отличаются. Калий содержится во всех растениях, особенно много калия в плодах. Природным источником калия являются минеральные соли. Биологическая роль калия Калий один из важнейших электролитов в организме. Калий, как и натрий, имеет большое значение в образовании буферных систем, предотвращающих сдвиги реакции среды и обеспечивающих их постоянство. Калий вместе с натрием регулирует содержание воды внутри клеток. Обеспечивает поддержание электрического потенциала в нервах и на поверхности клеточных мембран, чем регулируется сокращение мышц. Калий включается в механизм накопления гликогена - основного источника энергии в клетке. Калий активирует работу ряда ферментов. Вместе с натрием и хлором, калий является постоянным составным элементом всех клеток и тканей. В организме эти элементы содержатся в определенном соотношении и обеспечивают постоянство внутренней среды. В виде катиона К+ калий участвует в поддержании гомеостаза (ионное равновесие, осмотическое давление в жидкостях организма). Хлориды калия и натрия, будучи сильными электролитами, участвуют в генерации и проведении электрических импульсов в нервной и мышечной ткани. Таким образом калий участвует в поддержании электрической активности мозга, функционировании нервной ткани, сокращении скелетных и сердечных мышц. Калий регулирует активность таких важнейших ферментов, как К+-АТФ-аза, ацетилкиназа, пируватфосфокиназа. Терапевтическое значение калия связано с его раздражающим действием на слизистые оболочки и повышением тонуса гладких мышц (кишечник, матка), в силу чего его соединения используются в качестве слабительных средств. Калий вызывает расширение сосудов внутренних органов и сужение периферических сосудов, что способствует усилению мочеотделения. Калий замедляет ритм сердечных сокращений и, действуя аналогично блуждающему нерву, участвует в регулировании деятельности сердца. Основные функции калия в организме: Поддержание постоянства состава клеточной и межклеточной жидкости. Поддержание кислотно-щелочного равновесия. Обеспечение межклеточных контактов. Обеспечение биоэлектрической активности клеток. Поддержание нервно-мышечной возбудимости и проводимости. Участие в нервной регуляции сердечных сокращений. Поддержание водно-солевого баланса, осмотического давления. Роль катализатора при обмене углеводов и белков. Поддержание нормального уровня кровяного давления. Участие в обеспечении выделительной функции почек. Метаболизм калия В организм соединения калия поступают с пищей. Биоусвояемость калия организмом составляет 90-95%. Соли калия легко всасываются и быстро выводятся из организма с мочой, потом и через желудочно-кишечный тракт. Калий является основным внутриклеточным катионом. Его концентрация в клетках в 30 раз выше, чем вне клеток. В организме взрослого человека содержится 160-180 г калия (около 0,23% от общей массы тела). Потребность в калии Суточная потребность в калии составляет 2 г. Пищевые источники калия При смешанном пищевом рационе потребность в калии удовлетворяется полностью, однако имеются существенные сезонные колебания: невысокое потребление весной (около 2 г в сутки), максимальное - осенью (5-6 г в сутки). Содержание калия в пище жителей разных стран колеблется от 1800 до 5600 мг. Считается, что взрослый человек потребляет в день 2200-3000 мг калия. Калий в основном содержится в растительных продуктах. Много калия содержат картофель (429 мг/100 г), хлеб (240 мг/100 г.), арбуз, дыня. Значительным содержанием калия отличаются бобовые: соя (1796 мг/100 г), фасоль (1061 мг/100 г), горох (900 мг/100 г). Много калия содержат крупы: овсяная, пшено и др. Существенным источником калия являются овощи: капуста (148 мг/100 г), морковь (129 мг/100 г), свекла (155 мг/100 г), а также продукты животного происхождения; молоко (127 мг/100 г), говядина (241 мг/100 г), рыба (162 мг/100 г). Также достаточно много калия в яблоках, винограде, цитрусовых, киви, бананах, авокадо, сухофруктах, чае. Необходимо помнить о том, что пища, богатая калием (орехи, бананы, картофель, морковь, абрикосы), вызывает повышенное выведение натрия, и наоборот. При преимущественном потреблении продуктов животного происхождения человек получает сбалансированное количество натрия и калия. При питании растительной пищей, богатой калием, необходимо дополнительное введение натрия. Натрий - химический элемент I группы периодической системы с атомным номером 11, обозначается символом Na (лат. Natrium), мягкий щелочной металл серебристо-белого цвета, быстро тускнеющий на воздухе. В природе, в силу своей большой химической активности, встречается только в виде химических соединений. Источник натрия - поваренная соль NaCl, является одним из самых распространенных соединений натрия в природе. Вода морей и океанов содержит в своем составе до 3% хлорида натрия. На Земле имеются огромные залежи каменной соли. Этот элемент входит в состав всех организмов растительного и животного мира. Биологическая роль натрия Натрий - электролит, играющий ключевую роль в регулировании жидкостного обмена. Натрий в виде катиона Na+ участвует в поддержании гомеостаза (ионное равновесие, осмотическое давление в жидкостях организма). Натрий играет весьма важную роль в регуляции осмотического давления и водного обмена, при нарушении которых отмечаются следующие признаки: жажда, сухость слизистых оболочек, отечность кожи. Натрий оказывает значительное влияние и на белковый обмен. Обмен натрия находится под контролем щитовидной железы. При гипофункции щитовидной железы происходит задержка натрия в тканях. При гиперфункции количество натрия в коже уменьшается, а выделение его из организма усиливается. В организме человека натрий выполняет "внеклеточные" функции: Транспорт углекислого газа. Гидратация белков. Метаболизм натрия Потребность организма Вместе с тем установлена прямая зависимость между избыточным потреблением натрия и гипертонией. С наличием натрия в организме связывают также способность тканей удерживать воду. В связи с этим избыточное потребление поваренной соли перегружает почки; при этом страдает и сердце. Вот почему при заболеваниях почек и сердца рекомендуется резко ограничить потребление соли. Подробнее: Поваренная соль. Токсичность Натрий нетоксичен. Для большинства здоровых людей совершенно безвредно 4- 5 г натрия в день. Другими словами, помимо 0,8 г естественного натрия можно потреблять еще 3,2 г натрия, т. е. 8 г поваренной соли. В том числе около 2,4 г натрия организм человека получает с хлебом и 1-3 г натрия поступает с соленой пищей. Биологическая роль фосфора Фосфор содержится во всех частях зелёных растений, ещё больше его в плодах и семенах. Высшие организмы используют органический фосфор, получая его из растительных источников с пищей. Фосфор также содержится в животных тканях, входит в состав белков и других важнейших органических соединений, является элементом жизни. Общее содержание фосфора в организме человека составляет приблизительно 500 г у мужчин и 400 г у женщин. Фосфор во внеклеточных жидкостях составляет лишь 1% от общего фосфора организма. Большая часть (70%) общего фосфора в плазме обнаружена как составная часть органических фосфолипидов. Однако клинически полезной фракцией в плазме является неорганический фосфор, 10% которого связано с белком, 5% составляют комплексы с кальцием или магнием и большая часть неорганического фосфора плазмы представлена двумя фракциями ортофосфата. Фосфор обнаружен во всех клетках организма. Основные места, содержащие его, это – гидроксиапатит кости и скелетная мускулатура. Фосфор присутствует в живых клетках в виде орто- и пирофосфорной кислот, входит в состав нуклеотидов, нуклеиновых кислот, фосфопротеидов, фосфолипидов, коферментов, ферментов. Мембраны клетки состоят в значительной степени из фосфолипидов. Кости человека состоят из гидроксилапатита, который представляет собой сложную соль и участвует в белковом обмене. Содержание его в клетках в 50 раз больше, чем в крови. Фосфор в виде фосфатов входит в состав нуклеиновых кислот и нуклеотидов (ДНК, РНК), участвует в процессах кодирования и хранения генетической информации. Соединения фосфора принимают участие в важнейших процессах обмена энергии. Аденозинтрифосфорная кислота (АТФ) и креатинфосфат являются аккумуляторами энергии, с их превращениями связаны мышление и умственная деятельность, энергетическая жизнеобеспеченность организма. Неорганический фосфат входит в состав буферной системы крови и регулирует ее кислотно-основное равновесие. Этот показатель является очень важным, даже незначительные его изменения могут привести к тяжелым нарушениям в организме. Большая часть фосфора, содержащегося в крови, входит в состав эритроцитов. В состав зубной эмали входит фторапатит. Основную роль в превращениях соединений фосфора в организме человека и животных играет печень. Постоянную концентрацию фосфора в организме обеспечивают витамин D и гормон паращитовидных желез. Невсосавшийся в тонком кишечнике фосфор выводится с мочой (до 60%) и калом. Избыточное поступление фосфора приводит к развитию повышенного содержания фосфора в крови, что провоцирует развитие мочекаменной болезни. Этот факт имеет большое значение у детей младшего возраста, у них органы еще не сформированы до конца и не могут обеспечить его полноценное выведение. При нарушениях обмена фосфора возникает размягчение костной ткани у взрослых и развивается рахит у детей. Метаболизм фосфора Физиологические состояния, характеризующиеся увеличением потребности в фосфоре (рост, беременность и кормление грудью), сопровождаются соответствующим усилением его абсорбции. У людей старших возрастных групп происходят изменения в экскреции фосфора и адаптации к фосфору пищи. Показано, что, несмотря на потребление рекомендуемой нормы фосфора, отрицательный его баланс наблюдается в возрасте старше 65 лет, за счет потери фосфора с мочой. Среднее ежедневное потребление фосфора составляет приблизительно 1500 мг для мужчин и 1000 мг для женщин. При напряженных физических тренировках потребность в фосфоре может быть существенно увеличена. Пищевые источники фосфора Токсичность фосфора Железо это блестящий, серебристо-белый, мягкий металл. Растворяется в разбавленных кислотах; во влажном воздухе покрывается ржавчиной. Входит в состав сотен минералов, встречается и в виде самородного железа. В чистом виде пластичный переходный металл, с давних пор широко применяемый человеком. В промышленности железо широко применяется в виде множества различных сталей и сплавов. Железо издревле использовалось в качестве лекарства. В папирусах Египта ржавчина предписывалась в качестве мази от облысения. В XVII веке стали применять железо для лечения хлороза, который является следствием его дефицита. Биологическая роль железа Важная роль железа для организма человека установлена еще в XVIII в. Железо незаменимо в процессах кроветворения и внутриклеточного обмена. Этот элемент входит в состав гемоглобина крови, отвечающего за транспорт кислорода и выполнение окислительных реакций. Железо, являясь составной частью миоглобина и гемоглобина, входит в состав цитохромов и ферментов, принимающих участие в окислительно-восстановительных реакциях. Из 4 г железа, содержащегося в организме взрослого человека, большая часть (около 2,5 г - примерно 55-60% запасов железа в организме) приходится на гемоглобин, около 0,4 г (10 до 24%) - активное железо, входящее в состав различных гемопротеидов, участвует в формировании красящего вещества мышц (миоглобина). Остальная часть железа (примерно 21%) находится в депонированном состоянии, то есть откладывается "про запас" в печени и селезенке. Железистые соединения вовлечены в многочисленные окислительно-восстановительные реакции, начинающиеся с восстановления водорода и его объединения в углеводы в процессе фотосинтеза. Аэробный метаболизм зависим от железа из-за его роли в функциональных группах большинства ферментов цикла Кребса, как электронного транспортера в цитохромах и как способ транспорта O 2 и CO 2 в гемоглобине. Увеличение количества запасов железа может наблюдаться при перемещении железа из эритроцитов в депо. Эти изменения происходят при анемиях, кроме тех, которые являются железодефицитными. Истинное увеличение количества общего железа в организме наблюдается у пациентов с гемохроматозом, трансфузионным гемосидерозом или, редко, после чрезмерного длительного приема препаратов железа. Метаболизм железа В организм человека железо поступает с пищей. Пищевые продукты животного происхождения содержат железо в наиболее легко усваиваемой форме. Некоторые растительные продукты также богаты железом, однако его усвоение организмом происходит тяжелее. Считается, что организм усваивает до 35% "животного" железа. В то же время другие источники сообщают, что этот показатель составляет менее 3%. Среднее ежедневное потребление железа в Европе – 10–30 мг (5–7 мг на 1000 калорий). При этих оценках не учитывается содержание железа в напитках и его добавка или потеря в процессе приготовления пищи. Железная посуда вносит значительный вклад в содержание железа в приготавливаемых блюдах. Замена стали алюминием и пластмассой имела неблагоприятный эффект на поступление железа с пищей. Количество железа в организме изменяется в зависимости от веса, концентрации гемоглобина, пола и размера депо. Самое большое депо – гемоглобин, в частности в циркулирующих эритроцитах. Запасы железа здесь варьируют в соответствии с массой тела, полом и концентрацией гемоглобина крови и составляют примерно 57% от всего железа, содержащегося в организме человека. Например, человек, весящий 50 кг, чья концентрация гемоглобина крови – 120 г/л имеет содержание гемового железа 1,1 г. Количества негемового запаса железа, содержащегося в форме ферритина и гемосидерина также зависит от возраста, пола, размера тела, а кроме того, от его потери (от кровотечения), беременности или перегрузки железом (при гемохроматозе). Тканевой пул железа включает миоглобин и крошечную, но эссенциальную фракцию железа в ферментах. Примерно 9% железа содержится в в миоглобине. Существует "лабильный пул" – быстрый компонент рециркуляции, который не имеет определенного анатомического или клеточного местоположения. В костном мозге комплекс железо-трансферрин проникает в цитоплазму предшественников эритроцитов, в которых железо высвобождается из комплекса и встраивается в порфириновое кольцо гема. Гем включается в гемоглобин и в составе нового эритроцита железо покидает костный мозг. Процесс транспортировки железа трансферрином в костный мозг осуществляется 10-20 раз в сутки. Ежедневно в организме взрослого человека обновляется 0,8% циркулирующих эритроцитов. В каждом 1 мл крови содержится 1 мг элементарного железа. Не утилизированное предшественниками эритроцитов железо запасается в селезенке, печени и костном мозге в виде ферритина. При избытке пищевого или медикаментозного железа, несмотря на уменьшение его всасывания в процентном отношении, развивается перегрузка железом, последствия которой клинически манифестируют при гемолитических состояниях, частых гемотрансфузиях и у больных с гемохроматозом. Нормальные запасы железа в организме составляют 300–1000 мг для взрослых женщин и 500–1500 мг для взрослых мужчин. Большее количество людей имеют запас железа на нижней границе нормы. Доказано, что у многих здоровых женщин фактически отсутствуют какие-либо запасы железа. Суточная потребность в железе составляет 10 мг у мужчин и 20 мг у женщин. Считается, что оптимальная интенсивность поступления железа составляет 10-20 мг/сутки. Дефицит железа может развиться, если поступление этого элемента в организм будет менее 1 мг/сутки. Мужчины и неменструирующие женщины при отсутствии патологического кровотечения могут получать железо, в котором они нуждаются, из общепринятого рациона (12–18 мг в день). Однако многие менструирующие женщины и юные девочки, которые из-за беспокойства о своем весе ограничивают рацион, часто имеют низкое потребление железа – менее 10 мг в день. Потребность в течение беременности часто настолько большая, что она превышает количество железа, которое поступает из диеты. Дополнительная терапия железом для предотвращения его дефицита необходима в течение второй половины беременности и от 2 до 3 месяцев в течение послеродового периода. Пищевые источники железа Здоровые люди абсорбируют приблизительно 5–10% диетического железа, а в условиях его дефицита – 10–20%. Всасывание железа из пищи очень изменчиво. Практически из всех продуктов железо усваивается очень плохо (иногда в организм попадают лишь доли процента железа, содержащегося в пище). Из мясных продуктов оно усваивается легче. Самое большое из мяса млекопитающих – говядины, меньше – из мяса домашней птицы или рыбы и меньше всего – из печени, яиц, молока и хлебных злаков. К продуктам, в которых содержится большое количество железа с высокой биодоступностью, т.е. способностью всасываться, относятся коровья печень и почки, яйци, рыба. Токсичность железа Магний представляет собой легкий щелочноземельный металл белого цвета. На воздухе этот металл покрывается тонкой пленкой оксидов, придающей ему матовый вид. При нагревании легко сгорает, превращаясь в окись магния – жженую магнезию. При сгорании магния происходит сильное выделение света и тепла, т.н. магниевая вспышка. Легко соединяется с галоидами, а при нагревании – с серой и азотом. Окись магния представляет собой белый порошок, легко растворимый в кислотах. Большинство солей магния хорошо растворимо в воде. Присутствие в жидкости ионов магния придает ей горький вкус. Биологическая роль магния Ближайшим соседом магния в группе периодической системы является кальций, с которым магний вступает в обменные реакции. Эти два элемента легко вытесняют друг друга из соединений. Дефицит магния в диете, богатой кальцием, обусловливает задержку кальция во всех тканях, что ведет к их обызвествлению. При недостатке магния развиваются депрессивные состояния, появляется мышечная слабость, наблюдается склонность к судорожным состояниям. Недостаточное содержание магния в организме может быть причиной заболеваний желудочно-кишечного тракта со склонностью к жидкому стулу. Метаболизм магния В организме взрослого человека содержится около 140 г магния (0,2% от массы тела), причем 2/3 от этого количества приходится на костную ткань. Главное «депо» магния находится в костях и мышцах. Магний поступает в организм с пищей (в частности с поваренной солью) и водой. Часть ионизированного магния отщепляется от магнезиальных солей пищи в желудке и всасывается в кровь. Основная часть трудно растворимых солей магния переходит в кишечник и всасывается только после их соединения с жирными кислотами. В желудочно-кишечном тракте абсорбируется до 40-45% поступившего магния. Магний абсорбируется и в тощей, и в подвздошной кишке. Процент абсорбции магния регулируется его концентрацией в пище и присутствием ингибирующих или способствующих абсорбции компонентов рациона. Увеличение потребления кальция незначительно влияет на всасывание магния. В случаях, когда абсорбция магния увеличивалась, не наблюдалось повышение его уровня в крови из-за повышения экскреции с мочой. Увеличение перорального поступления магния приводит к уменьшению абсорбции фосфата. При различных синдромах мальабсорбции, как правило, уменьшается всасывание магния в кишке. В крови человека около 50% магния находится в связанном состоянии, а остальная часть в ионизированном. Концентрация магния в крови у человека составляет 2,3–4,0 мг%. Комплексные соединения магния поступают в печень, где используются для синтеза биологически активных соединений. Выводится магний из организма в основном с мочой (50-120 мг) и с потом (5-15 мг). Почка играет ключевую роль в гомеостазе магния. Приблизительно 75% магния сыворотки фильтруется в почечных клубочках. Нарушение фильтрации уменьшает количество магния, поступающего в канальцы. Серьезное снижение функции клубочков служит причиной повышения магния в сыворотке. Здоровая почка при среднем потреблении магния повторно абсорбирует приблизительно 95% фильтрованного ею количества. Когда потребление магния строго ограничено у людей с нормальной функцией почек, выделение магния становится небольшим – менее 0,25 ммоль/сут. Увеличение потребление магния до нормы повышает мочевую экскрецию без изменения уровня магния сыворотки при условии, что функция почек нормальна и вводимое количество не превышает максимальную клубочковую фильтрацию. Как правило, норма поступления при обычном питании составляет 200-400 мг в течение суток. При нормальном питании организм, как правило, полностью обеспечивается магнием. Оптимальное соотношение кальция и магния 1:0,5, что обеспечивается обычным подбором пищевых продуктов. Пищевые источники магния Особенно богата магнием растительная пища. Почти половина нормы потребления магния удовлетворяется хлебом и крупяными изделиями. В хлебе содержится 85 мг% магния, овсяной крупе - 116, ячневой - 96, фасоли - 103 мг%. Из других источников питания следует отметить орехи - 170-230 мг% и большинство овощей - 10-40 мг% магния. Много магния содержат пшеничные отруби, соевая мука, сладкий миндаль, горох, абрикосы, белокочанная капуста. В молоке и твороге содержится относительно мало магния - 14 и 23 мг% соответственно. Однако, в отличие от растительных продуктов, магний находится в молочных продуктах в легко усвояемой форме - в виде цитрата магния (магниевой соли лимонной кислоты). В связи с этим молочные продукты, потребляемые в значительных количествах, являются существенным источником магния для организма человека. Токсичность магния Хлор (Cl) - 17-й элемент VII группы периодической таблицы. Название происходит от греч. chloros – «зеленоватый». Открыт и выделен К. Шееле в 1774 г. (Швеция), а название этому элементу дал Дэви (Davy) в 1810 г. Газообразный Cl2, является сильным окислителем и представляет собой отравляющее вещество. Хлор очень активен - он непосредственно соединяется почти со всеми элементами периодической системы. Поэтому в природе он встречается только в виде соединений в составе минералов. Самые большие запасы хлора содержатся в составе солей вод морей и океанов. На долю хлора приходится 0,025 % от общего числа атомов земной коры, а человеческий организм содержит 0,25 % ионов хлора по массе. Биологическая роль хлора Учитывая связь хлора и натрия, следует отметить, что поступление в организм этих элементов тесно взаимосвязано. У животных и человека, ионы хлора участвуют в поддержании осмотического равновесия, хлорид-ион имеет оптимальный радиус для проникновения через мембрану клеток. Именно этим объясняется его совместное участие с ионами натрия и калия в создании постоянного осмотического давления и регуляции водно-солевого обмена. Под воздействием ГАМК (нейромедиатор) ионы хлора оказывают тормозящий эффект на нейроны путем снижения потенциала действия. В желудке ионы хлора создают благоприятную среду для действия протеолитических ферментов желудочного сока. Хлорные каналы представлены во многих типах клеток, митохондриальных мембранах и скелетных мышцах. Эти каналы выполняют важные функции в регуляции объема жидкости, трансэпителиальном транспорте ионов и стабилизации мембранных потенциалов, участвуют в поддержании рН клеток. Метаболизм хлора В организмах животных и человека сера выполняет незаменимые функции: обеспечивает пространственную организацию молекул белков, необходимую для их функционирования, защищает клетки, ткани и пути биохимического синтеза от окисления, а весь организм - от токсического действия чужеродных веществ. В организме человека сера непременная составная часть клеток, ферментов, гормонов, в частности инсулина, вырабатываемого поджелудочной железой, и серосодержащих аминокислот. Много серы содержится в нервной и соединительной тканях, а также в костях. Сера входит в состав серосодержащих аминокислот - цистеина, цистина, незаменимой аминокислоты метионина, биологически активных веществ (гистамина, биотина, липоевой кислоты и др.). В активные центры молекул ряда ферментов входят SH - группы, участвующие во многих ферментативных реакциях, в том числе в создании и стабилизации нативной трехмерной структуры белков, а в некоторых случаях - непосредственно как каталитические центры ферментов. Сера обеспечивает в клетке такой тонкий и сложный процесс, как передача энергии: переносит электроны, принимая на свободную орбиталь один из неспаренных электронов кислорода. Этим объясняется высокая потребность организма в данном элементе. В экспериментальных исследованиях на животных показано, что при гипертиреидизме или введении гидрокортизона тормозится включение сульфата в хрящи растущих костей. После адреналэктомии резко возрастает общее количество серы в крови и увеличивается выведение ее с мочой. Метаболизм серы Неорганические соединения серы (соли серной и сернистой кислот) не всасываются и выделяются из организма со стулом. Органические белковые соединения подвергаются расщеплению и всасываются в кишечнике. Сера содержится во всех тканях человеческого организма; особенно много серы в мышцах, скелете, печени, нервной ткани, крови. Также богаты серой поверхностные слои кожи, где сера входит в состав кератина и меланина. В тканях сера находится в самых разнообразных формах, как неорганических (сульфат, сульфит, сульфиды, тиоцианат и др.), так и органических (тиолы, тиоэфиры, сульфоновые кислоты, тиомочевина и др.). В виде сульфат-аниона сера присутствует в жидких средах организма. Атомы серы являются составной частью молекул незаменимых аминокислот (цистин, цистеин, метионин), гормонов (инсулин, кальцитонин), витаминов (биотин, тиамин), глутатиона, таурина и других важных для организма соединений. В их составе сера участвует в окислительно-восстановительных реакциях, процессе тканевого дыхания, выработке энергии, передаче генетической информации и выполняет многие другие важные функции. Сера является компонентом структурного белка коллагена. Хондроитин-сульфат присутствует в коже, хрящах, ногтях, связках и клапанах миокарда. Важными серосодержащими метаболитами также являются гемоглобин, гепарин, цитохромы, эстрогены, фибриноген и сульфолипиды. Образующаяся в организме эндогенная серная кислота участвует в обезвреживании токсических соединений (фенол, индол и др.), которые вырабатываются микрофлорой кишечника; а также связывает чужеродные для организма вещества, в том числе лекарственные препараты и их метаболиты. При этом образуются безвредные соединения конъюгаты, которые затем выводятся из организма. Потребность в сере Содержание серы в теле взрослого человека - около 0,16% (110 г на 70 кг массы тела). Суточная потребность здорового организма в сере составляет 4-5 г. Пищевые источники серы Токсичность серы Сера и экология Сернистый ангидрид может вызывать общее отравление организма, проявляющееся в изменении состава крови, поражении органов дыхания, повышении восприимчивости к инфекционным заболеваниям. Развивается нарушение обмена веществ, повышение артериального давления у детей, ларингит, конъюнктивит, ринит, бронхопневмония, аллергические реакции, острые заболевания верхних дыхательных путей и системы кровообращения. При кратковременном воздействии – раздражение слизистой оболочки глаз, слезотечение, затруднение дыхания, тошнота, рвота, головные боли. Повышенная утомляемость, ослабление мышечной силы, снижение памяти. Замедление восприятия, ослабление функциональной способности сердца, изменение бактерицидности кожи. Хлорид натрия известен в быту под названием поваренной соли, основным компонентом которой он является. Хлорид натрия в значительном количестве содержится в морской воде, создавая её солёный вкус. Встречается в природе в виде минерала галита (каменная соль). В приготовлении пищи поваренная соль употребляется как важнейшая приправа. Соль имеет хорошо знакомый каждому человеку характерный вкус, без которого пища кажется пресной. Соль также выполняет функцию консерванта. Высокая концентрация соли в воде губительна для живущих в этой воде организмов. Метаболизм хлорида натрия Соль жизненно необходима человеку, как и всем прочим живым существам. Поваренная соль имеет большое физиологическое значение для организма: участвует в секреции соляной кислоты в желудке, в транспорте аминокислот, углеводов и калия, способствует всасыванию глюкозы. Соль участвует в поддержании и регулировании водного баланса в организме. Большая часть натрия в организме находится в связанном с хлором состоянии. Большая часть хлорида натрия, содержащегося в организме, находится во внеклеточной жидкости. Натрий является главным катионом в плазме крови, составляя более 90% от их общего количества. Недостаток натрия хлорида Избыток натрия хлорида Чрезмерное или просто повышенное потребление соли сопровождается задержкой тканями воды, что увеличивает риск сердечно-сосудистых заболеваний, может приводить к повышенному артериальному давлению и болезням почек, нарушению обмена кальция, отложению солей, остеопорозу, различным заболеваниям суставов. Наряду с другими солями натрия, поваренная соль может стать причиной заболеваний глаз. Обычная пищевая соль служит сильнейшим ядом. С одной стороны, без соли невозможно жить, с другой стороны, доза в 100 раз превышающая суточную норму потребления, является смертельной. Токсичность поваренной соли для человека, установленная по минимальной летальной дозе, составляет 8,2 г/кг веса при пероральном введении. Суточная потребность в поваренной соли составляет 10-12 г в сутки. В странах с холодным климатом требуемая организму ежедневная норма значительно ниже, чем в странах с жарким климатом, виной тому различная потливость. Средняя ежедневная норма потребления для взрослого человека: 3-5 граммов соли в холодных странах и до 20 граммов в жарких. Снижение количества поваренной соли до 4-5 г в сутки совершенно безопасно и рекомендуется при лечении ряда заболеваний, в частности при лечении заболеваний органов кровообращения и почек, сопровождающихся большими отеками, гипертонической болезни и ожирения. Кроме того, малосоленая пища полезна при заболеваниях поджелудочной железы, печени и желчевыводящих путей, некоторых болезнях желудка, а также в тех случаях, когда в лечебно-профилактических целях назначаются гормональные препараты. Подробнее: Лечебное питание при заболеваниях пищевода, желудка и двенадцатиперстной кишки. Лечебное питание при заболеваниях поджелудочной железы. Лечебное питание при заболеваниях печени и желчных путей. Увеличенное введение поваренной соли необходимо при ее больших потерях. Это актуально при различных состояниях: частой рвоте, поносе, аддисоновой болезни. Задержка или потеря натрия ведут к пропорциональной задержке или потере воды, при этом осмотическое постоянство сохраняется за счет изменения объема жидкости. Поваренная соль Пол Брэгг, известный американский ученый-натуропат, считал, что человеческий организм абсолютно не нуждается ни в поваренной соли, ни в других неорганических веществах. Минеральных веществ, необходимых организму, достаточно в растительной пище. В магазинах поваренная соль состоит до 97 % из NaCl, остальная доля приходится на различные примеси. Чаще всего добавляют йодаты и карбонаты, в последние годы всё чаще добавляют фториды. Для профилактики зубных заболеваний употребляют соль с фторидом. С 1950-х годов добавлять фторид в соль стали в Швейцарии, и благодаря положительным результатам в борьбе с кариесом в 1980-х годах фторид стали добавлять в соль во Франции и в Германии. До 60 % продаваемой соли в Германии и до 80 % в Швейцарии - это соль с фторидами. Иногда в поваренную соль добавляют другие вспомогательные вещества, например ферроцианид калия (E536 в европейской системе кодирования пищевых добавок; неядовитая комплексная соль) в качестве агента, улучшающего хранение поваренной соли. МИКРОЭЛЕМЕНТЫ Цинк представляет собой голубовато-белый пластичный металл, хрупкий при литье. На воздухе покрывается оксидной пленкой, реагирует с кислотами и щелочами. Используется при гальванизации железа, в сплавах, таких напр., как латунь; в аккумуляторных батареях и как стабилизатор полимеров. Природным источником цинка являются минералы (сфалерит). Биологическая роль цинка Цинк обнаружен в составе более 300 ферментов. Уникальность цинка заключается в том, что ни один элемент не входит в состав такого количества ферментов и не выполняет таких разнообразных физиологических функций. Цинк необходим для нормального роста и развития, полового созревания, а в дальнейшем — для поддержания репродуктивной функции, а также для нормального кроветворения и заживления ран. Цинк играет важнейшую роль в процессах регенерации кожи, роста волос и ногтей, секреции сальных желез. Дефицит цинка может приводить к серьезным физиологическим нарушениям. При недостаточном содержании цинка в пищевом рационе с детского возраста отмечаются карликовость, задержка полового развития, поражение кожи, снижение обоняния и вкусовые извращения. При хроническом дефиците цинка возникает ряд кожных заболеваний. После подтверждения в 1961 г.
|
|||||||
Последнее изменение этой страницы: 2016-08-15; просмотров: 574; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 13.59.248.75 (0.013 с.) |