Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Молекулярно-кинетическая теория идеальных газов↑ ⇐ ПредыдущаяСтр 3 из 3 Содержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
· Концентрация частиц (молекул, атомов и т.п.) однородной системы
где V -объём системы · Основное уравнение кинетической теории газов где p — давление газа; < Ek >-средняя кинетическая энергия поступательного движения молекулы. · Средняя кинетическая энергия: приходящаяся на одну степень свободы молекулы приходящаяся на все степени свободы молекулы (полная энергия молекулы)
поступательное движение молекулы
где k -постоянная Больцмана; T- термодинамическая температура; i- число степеней свободы молекулы; Энергия вращательного движения молекулы · Зависимость давления газа от концентрации молекул и температуры
· Скорость молекулы: средняя квадратичная , или средняя арифметическая , или наиболее вероятная , или где m 1 – масса одной молекулы. · Барометрическая формула где ph и p 0 – давление газа на высоте h и h 0. · Распределение Больцмана во внешнем потенциальном поле где n и n 0 – концентрация молекул на высоте h и h =0; П= m 0 gh – потенциальная энергия молекулы в поле тяготения. · Среднее число соударений, испытываемых молекулой газа за 1 с , где d – эффективный диаметр молекулы; n – концентрация молекул; <υ> - средняя арифметическая скорость молекул. · Средняя длина свободного пробега молекул газа . · Закон теплопроводности Фурье , где Q – теплота, прошедшая посредством теплопроводности через площадь S за время t; dT / dx – градиент температуры; λ – теплопроводность: где cV – удельная теплоемкость газа при постоянном объеме; ρ – плотность газа; <υ> - средняя арифметическая скорость теплового движения его молекул; < l > - средняя длина свободного пробега молекул. · Закон диффузии Фика где M – масса вещества, переносимая посредством диффузии через площадь S за время t; d ρ/ dx – градиент плотности; D – диффузия: . · Закон Ньютона для внутреннего трения (вязкости) , где F – сила внутреннего трения между движущимися слоями площадью S; dυ/dx – градиент скорости; η – динамическая вязкость: .
6.1. Начертить графики изотермического, изобарного и изохорного процессов в координатах P и V, P и Т, Т и V. 6.2. Определить число N атомов в 1 кг водорода и массу одного атома водорода. Ответ: Н = 3,01·1026; т0 = 3,32.10-27 кг. 6.3. В закрытом сосуде вместимостью 20 л находятся водород массой 6 г и гелий массой 12 г. Определить: 1) давление; 2) молярную массу газовой смеси в сосуде, если температура смеси Т = 300 К. Ответ: 1) P = 0,75 кПа; 2) М = 3·10-3 кг/моль. 6.4. Определить плотность смеси газов водорода массой m1 = 8 г и кислорода массой m2 = 64 г при температуре Т = 290 К и при давлении 0,1 МПа. Газы считать идеальными. Ответ: 0,498 кг/м3. 6.5. Баллон вместимостью V = 20 л содержит смесь водорода и азота при температуре 290 К и давлении 1 МПа. Определить массу водорода, если масса смеси равна 150 г. Ответ: 6,3 г. 6.6. В сосуде вместимостью 1 л находится кислород массой 1 г. Определить концентрацию молекул кислорода в сосуде. Ответ: 1,88.1025 м-3. 6.7. Определить наиболее вероятную скорость молекул газа, плотность которого при давлении 40 кПа составляет 0,35 кг/м3. Ответ: 478 м/с. 6.8. Определить среднюю кинетическую энергию <E 0 > поступательного движения молекул газа, находящегося под давлением 0,1 Па. Концентрация молекул газа равна 1013 см-3. Ответ: 1,5·10-19 Дж. 6.9. Используя закон распределения молекул идеального газа по скоростям, найти формулу наиболее вероятной скорости υB. Ответ: υB = 6.10. Используя закон распределения молекул идеального газа по скоростям, найти закон, выражающий распределение молекул по относительным скоростям и (u = υ/υв). Ответ: f (u) = . 6.11. На какой высоте давление воздуха составляет 60 % от давления на уровне моря? Считать, что температура воздуха везде одинакова и равна 10 °С. Ответ: 4,22 км. 6.12. Каково давление воздуха в шахте на глубине 1 км, если считать, что температура по всей высоте постоянная и равна 22 °С, а ускорение свободного падения не зависит от высоты. Давление воздуха у поверхности Земли принять равным P0. Ответ: 1,12 P0. 6.13. Определить отношение давления воздуха на высоте 1 км к давлению на дне скважины глубиной 1 км. Воздух у поверхности Земли находится при нормальных условиях, и его температура не зависит от высоты Ответ: 0,78. 6.14. На какой высоте плотность воздуха в е раз (е — основание натуральных логарифмов) меньше по сравнению с его плотностью на уровне моря? Температуру воздуха и ускорение свободного падения считать не зависящими от высоты. Ответ: 7,98 км. 6.15. Определить среднюю длину свободного пробега < l > молекул кислорода, находящегося при температуре 0 °С, если среднее число < z > столкнрвений, испытываемых молекулой в 1 с, равно 3,7·109. Ответ: 115 нм. 6.16. При каком давлении средняя длина свободного пробега молекул водорода равна 2,5 см, если температура газа равна 67 °С? Диаметр молекулы водорода принять равным 0,28 нм. Ответ: 0,539 Па. 6.17. Определить среднюю продолжительность <τ> свободного пробега молекул водорода при температуре 27 °С и давлении 5 кПа. Диаметр молекулы водорода' принять равным 0,28 нм. Ответ: 13,3 нс. 6.18. Средняя длина свободного пробега < l > молекул водорода при нормальных условиях составляет 0,1 мкм. Определить среднюю длину их свободного пробега при давлении 0,1 мПа, если температура газа остается постоянной. Ответ: 101 м. 6.19. При температуре 300 К и некотором давлении средняя длина свободного пробега < l > молекул кислорода равна 0,1 мкм. Чему равно среднее число < z > столкновений, испытываемых молекулами в 1 с, если сосуд откачать до 0,1 первоначального давления? Температуру газа считать постоянной. Ответ: 4,45.108 с-1. 6.20. Определить коэффициент теплопроводности λ азота, находящегося в некотором объеме при температуре 280 К. Эффективный диаметр молекул азота принять равным 0,38 нм. Ответ: 8,25 мВт/(м.К). 6.21. Кислород находится при нормальных условиях. Определить коэффициент теплопроводности λ кислорода, если эффективный диаметр его молекул равен 0,36 нм. Ответ: 8,49 мВт/(м·К). 6.22. Пространство между двумя параллельными пластинами площадью 150 см2 каждая, находящимися на расстоянии 5 мм друг от друга, заполнено кислородом. Одна пластина поддерживается при температуре 17 °С, другая – при температуре 27 °С. Определить количество теплоты, прошедшее за 5 мин посредством теплопроводности от одной пластины к другой. Кислород находится при нормальных условиях. Эффективный диаметр молекул кислорода считать равным 0,36 нм. Ответ: 76,4 Дж. 6.23. Определить коэффициент диффузии D кислорода при нормальных условиях. Эффективный диаметр молекул кислорода принять равным 0,36 нм. Ответ: 9,18.10-6 м2/с. 6.24. Определить массу азота прошедшего вследствие диффузии через площадку 50 см2 за 20 с, если градиент плотности в направлении, перпендикулярном площадке, равен 1 кг/м4. Температура азота 290 К, а средняя длина свободного пробега его молекул равна 1 мкм. Ответ: 15,6 мг. 6.25. Определить коэффициент теплопроводности λ азота, если коэффициент динамической вязкости η для него при тех же условиях равен 10 мкПа.с Ответ: 7,42 мВт/(м.К).
Основы термодинамики
· Связь между молярной (Cm) и удельной (c) теплоёмкостями газа где M -молярная масса газа. · Молярные теплоёмкости * при постоянном объёме и постоянном давлении соответственно равны ; где i- число степеней свободы; R- молярная газовая постоянная. · Удельные теплоемкостью при постоянном объёме и постоянном давлении соответственно равны ; · Уравнение Майера · Показатель адиабаты , или , или . · Внутренняя энергия идеального газа , или , где < Ek >-средняя кинетическая энергия молекулы; N- число молекул газа; k- количество вещества, . · Работа, связанная с изменением объёма газа, в общем случае вычисляется по формуле где – V1 начальный объём газа; V2 - его конечныё объём. Работа газа; а) при изобарном процессе (p=const) б) при изотермическом процессе (T=const) в) при адиабатном процессе где T1 – начальная температура газа; T2 – ого конечная температура.
· Уравнение Пуассона (уравнение газового состояния при адиабатном процессе) · Связь между начальным и конечным значениями параметров состояния газа при адиабатном процессе: ; ; · Первое начало термодинамики в общем случае записывается в виде где Q -количество теплоты, сообщение газу; ∆ U -изменение его внутренней энергии; A -работа, совершаемая газом против внешних сил. Первое начало термодинамики: а) при изобарном процессе б) при изохорном процессе (A=0) в) при изотермическом процессе (∆U=0) г) при адиабатном процессе (Q=0) · Термический коэффициент полезного действия (КПД) цикла в общем случае где Q1 – количество теплоты, полученное рабочим телом (газом) от нагревателя; Q2 – количество теплоты, переданное рабочим телом охладителю. КПД цикла Карно , или где T1 – температура нагревателя; T1 – температура охладителя. · Изменение энтропии , где А и В – пределы интегрирования, соответствующие начальному и конечному состоянию системы. Так как процесс равновесный, то интегрирование проводится по любому пути. · Формула Больцмана , где S – энтропия системы; W – термодинамическая вероятность её состояния; k – постоянная Больцмана. 7.1. Азот массой m = 10 г находится при температуре Т = 290 К. Определить: 1) среднюю кинетическую энергию одной молекулы азота; 2) среднюю кинетическую энергию вращательного движения всех молекул азота. Газ считать идеальным. Ответ: 1) 10-20 Дж; 2) 860 Дж. 7.2. Кислород массой m = 1 кг находится при температуре Т = 320 К. Определить: 1) внутреннюю энергию молекул кислорода; 2) среднюю кинетическую энергию вращательного движения молекул кислорода. Газ считать идеальным. Ответ: 1) 208 кДж; 2) 83,1 кДж. 7.3. В закрытом сосуде находится смесь азота массой m 1 = 56 г и кислорода массой m 2 = 64 г. Определить изменение внутренней энергии этой смеси, если ее охладили на 20°. Ответ: 1,66 кДж. 7.4. Считая азот идеальным газом, определить его удельную теплоемкость: 1) для изобарного процесса; 2) для изохорного процесса. Ответ: 1) cV = 742 Дж/(кг.К); 2) cр = 1,04 кДж/(кг.К). 7.5. Определить удельные теплоемкости cV и cр, если известно, что некоторый газ при нормальных условиях имеет удельный объем V = 0,7 м3/кг. Что это за газ? Ответ: cV = 649 Дж/(кг·К), ср = 909 Дж/(кг·К). 7.6. Определить удельные теплоемкости cv и ср смеси углекислого газа массой m 1 = 3 г и азота массой m2 = 4 г. Ответ: cV = 667 Дж/(кг.К), сp = 918 Дж/(кг.К). 7.7. Определить показатель адиабаты г для смеси газов, содержащей гелий массой m1 = 8 г и водород массой m2 = 2 г Ответ: 1,55. 7.8. Применяя первое начало термодинамики и уравнение состояния идеального газа, показать, что разность удельных теплоемкостей ср – cV = R/M. 7.9. Кислород массой 32 г находится в закрытом сосуде под давлением 0,1 МПа при температуре 290 К. После нагревания давление в сосуде повысилось в 4 раза. Определить: 1) объем сосуда; 2) температуру, до которой газ нагрели; 3) количество теплоты, сообщенное газу. Ответ: 1) 2,4.10-2 м3; 2) 1,16 кК; 3) 18,1 кДж. 7.10. Определить количество теплоты, собщенное газу, если в процессе изохорного нагревания кислорода объемом V = 20 л его давление изменилось на Δ P = 100 кПа. Ответ: 5 кДж. 7.11. Двухатомный идеальный газ (ν = 2 моль) нагревают при постоянном объеме до температуры T 1 = 289 К. Определить количество теплоты, которое необходимо сообщить газу, чтобы увеличить его давление в n = 3 раза. Ответ: 24 кДж. 7.12. При изобарном нагревании некоторого идеального газа (ν = 2 моль) на Δ T = 90 К ему было сообщено количество теплоты 2,1 кДж. Определить: 1) работу, совершаемую газом; 2) изменение внутренней энергии газа; 3) величину γ = Cp / CV. Ответ: 1) 1,5кДж; 2) 0,6 кДж; 3) 1,4. 7.13. Азот массой m = 280 г расширяется в результате изобарного процесса при давлении P = 1 МПа. Определить: 1) работу расширения; 2) конечный объем газа, если на расширение затрачена теплота Q = 5 кДж, а начальная температура азота T 1 = 290 К. Ответ: А = 1,43 кДж; V2= 0,026 м3. 7.14. Кислород объемом 1 л находится под давлением 1 МПа. Определить, какое количество теплоты необходимо сообщить газу, чтобы: 1) увеличить его объем вдвое в результате изобарного процесса; 2) увеличить его давление вдвое в результате изохорного процесса. Ответ: 1) 3,5 кДж; 2) 2,5 кДж. 7.15. Некоторый газ массой m = 5 г расширяется изотермически от объема V1 до объема V2 = 2 V1. Работа расширения А = 1 кДж. Определить среднюю квадратичную скорость молекул газа. Ответ: 930 м/с. 7.16. Азот массой m = 14 г сжимают изотермически при температуре Т = 300 К от давления P 1 = 100 кПа до давления P 2 = 500 кПа. Определить: 1) изменение внутренней энергии газа; 2) работу сжатия; 3) количество выделившейся теплоты. Ответ: 1) 0; 2) –2,01 кДж; 3) 2,01 кДж. 7.17. Некоторый газ массой 1 кг находится при температуре Т = 300 К и под давлением P 1 = 0,5 МПа. В результате изотермического сжатия давление газа увеличилось в два раза. Работа, затраченная на сжатие, А = –432 кДж. Определить: 1) какой это газ; 2) первоначальный удельный объем газа. Ответ: 2) 1,25 м3/кг. 7.18. Азот массой m = 50 г находится при температуре T 1= 280 К. В результате изохорного охлаждения его давление уменьшилось в n = 2 раза, а затем в результате изобарного расширения температура газа в конечном состоянии стала равной первоначальной. Определить: 1) работу, совершенную газом; 2) изменение внутренней энергии газа. Ответ: 1) 2,08 кДж; 2) 0. 7.19. Работа расширения некоторого двухатомного идеального газа составляет А = 2 кДж. Определить количество подведенной к газу теплоты, если процесс протекал: 1) изотермически; 2) изобарно. Ответ: 1) 3 кДж; 2) 7 кДж. 7.20. При адиабатическом расширении кислорода (ν = 2 моль), находящегося при нормальных условиях, его объем увеличился в n = 3 раза. Определить: 1) изменение внутренней энергии газа; 2) работу расширения газа. Ответ: 1) –4,03 кДж; 2) 4,03 кДж. 7.21. Азот массой m = 1 кг занимает при температуре T1 = 300 К объем V1 = 0,5 м3. В результате адиабатического сжатия давление газа увеличилось в 3 раза. Определить: 1) конечный объем газа; 2) его конечную температуру; 3) изменение внутренней энергии газа. Ответ: 1) 0,228 м3; 2) 411 К; 3) 82,4 кДж. 7.22. Азот, находившийся при температуре 400 К, подвергли адиабатическому расширению, в результате которого его объем увеличился в n = 5 раз, а внутренняя энергия уменьшилась на 4 кДж. Определить массу азота. Ответ: 28 г. 7.23. Двухатомный идеальный газ занимает объем V 1 = 1 л и находится под давлением P 1 = 0,1 МПа. После адиабатического сжатия газ характеризуется объемом V 2 и давлением P 2. В результате последующего изохор-ного процесса газ охлаждается до первоначальной температуры, а его давление P 3 = 0,2 МПа. Определить: 1) объем V 2; 2) давление P 2. Начертить график этих процессов. Ответ: 1) 0,5л; 2) 264 кПа. 7.24. Кислород, занимающий при давлении P 1 = 1 МПа объем V 1= 5 л, расширяется в n = 3 раза. Определить конечное давление и работу, совершенную газом. Рассмотреть следующие процессы: 1) изобарный; 2) изотермический; 3) адиабатический. Ответ: 1) 1 МПа, 10 кДж; 2) 0,33 МПа, 5,5 кДж; 3) 0,21 МПа, 4,63 кДж. 7.25. Рабочее тело – идеальный газ – теплового двигателя совершает цикл, состоящий из последующих процессов: изобарного, адиабатического и изотермического. 7.26. В результате изобарного процесса газ нагревается от T 1 = 300 К до Т 2 = 600 К. Определить термический к.п.д. теплового двигателя. Ответ: 30,7 %. 7.27. Азот массой 500 г, находящийся под давлением P 1 = 1 МПа при температуре T 1= 127 °С, подвергли изотермическому расширению, в результате которого давление газа уменьшилось в n = 3 раза. После этого газ подвергли адиабатическому сжатию до начального давления, а затем он был изобарно сжат до начального объема. Построить график цикла и определить работу, совершенную газом за цикл. Ответ: –11,5 кДж. 7.28. Идеальный газ, совершающий цикл Карно, 70 % количества теплоты, полученной от нагревателя, отдает холодильнику. Количество теплоты, получаемое от нагревателя, равно 5 кДж. Определить: 1) термический к.п.д. цикла; 2) работу, совершенную при полном цикле. Ответ: 1) 30%; 2) 1,5 кДж. 7.29. Идеальный газ совершает цикл Карно. Газ получил от нагревателя количество теплоты 5,5 кДж и совершил работу 1,1 кДж. Определить: 1) термический к.п.д. цикла; 2) отношение температур нагревателя и холодильника. Ответ: 1) 20%; 2) 1,25. 7.30. Идеальный газ совершает цикл Карно, термический к.п.д. которого равен 0,4. Определить работу изотермического сжатия газа, если работа изотермического расширения составляет 400 Дж. Ответ: –240 Дж. 7.31. Идеальный газ совершает цикл Карно. Температура нагревателя Т 1 = 500 К, холодильника Т 2 = 300 К. Работа изотермического расширения газа составляет 2 кДж. Определить: 1) термический к.п.д. цикла; 2) количество теплоты, отданное газом при изотермическом сжатии холодильнику. Ответ: 1) 40 %; 2) 0,6 кДж. 7.32. Многоатомный идеальный газ совершает цикл Карно, при этом в процессе адиабатического расширения объем газа увеличивается в n = 4 раза. Определить термический к.п.д. цикла. Ответ: 37 %. 7.33. Во сколько раз необходимо увеличить объем V = 5 моль идеального газа при изотермическом расширении, если его энтропия увеличилась на 57,6 Дж/К? Ответ: 4. 7.34. При нагревании двухатомного идеального газа (ν = 3 моль) его термодинамическая температура увеличилась в n = 2 раза. Определить изменение энтропии, если нагревание происходит: 1) изохорно; 2) изобарно. Ответ: 1) 28,8 Дж/К; 2) 40,3 Дж/К. 7.35. Идеальный газ (ν = 2 моль) сначала изобарно нагрели, так что объем газа увеличился в n 1 = 2 раза, а затем изохорно охладили, так что давление его уменьшилось в n = 2 раза. Определить приращение энтропии в ходе указанных процессов. Ответ: 11,5 Дж/К. 7.36. Азот массой 28 г адиабатически расширили в n = 2 раза, а затем изобарно сжали до первоначального объема. Определить изменение энтропии газа в ходе указанных процессов. Ответ: –0,2 Дж/К.
|
||||
Последнее изменение этой страницы: 2016-08-16; просмотров: 804; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 52.14.7.53 (0.009 с.) |