Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Вероятностное истолкование электромагнитной волныСодержание книги
Поиск на нашем сайте
- связь между волновыми и корпускулярными свойствами света. Если в объеме V находится в данный момент N фотонов с заданной частотой, то создаваемая ими плотность энергии: . С другой стороны, плотность энергии электромагнитной волны (16.3) в вакууме: Сопоставление этих выражений приводит нас к выводу, что число фотонов в единице объема пропорционально квадрату напряженности поля (E2 или H2, или E2 и H2) электромагнитной волны, т.е. Если в течение интересующего нас отрезка времени средняя плотность фотонов <N/V> велика, то два различных толкования плотности энергии - волновое и корпускулярное - приводят к одним и тем же наблюдаемым значениям для плотности энергии. Только при одном толковании мы рассматриваем эту энергию как энергию электромагнитной волны, запасенную в полях E и H, а при другом - как суммарную энергию фотонов, находящихся в рассматриваемом объеме. Истинное соотношение между волновой и корпускулярной точками зрения выясняется при рассмотрении света очень малой интенсивности (16.3.2), т.е. когда величина E2 очень мала, так мала, что пропорциональное ей среднее число фотонов в единице объема <N/V> становится меньше единицы. В этом случае величину E2 приходится истолковывать как величину, задающую вероятность обнаружить фотон в заданном объеме, т.е.: Показатель преломления Скорость распространения света в среде, как и любой электромагнитной волны, см. (16.2): , где - показатель преломления среды, т.к. μ = 1 для большинства прозрачных веществ. Дисперсия Т.к. зависит от частоты электромагнитной волны (см. 9.13), то n = n(v) или n = n(λ) - показатель преломления будет зависеть от длины волны света. Световой вектор - это вектор напряженности электрического поля световой (электромагнитной!) волны.
16.5.4. Интенсивность света. Для любой электромагнитной волны: , см. (16.3.2). Для световой волны: , см. (16.1.2.3), откуда . Значит интенсивность световой волны: . Испускание света атомами Атом, при переходе электрона в состояние с более низкой энергией, испускает фотон, которому соответствует электромагнитная волна, протяженностью ~3 метра. Это соответствует длительности процесса излучения ~10-8 секунды. Такая электромагнитная волна называется цугом. Естественный свет Каждый цуг имеет вполне определенное направление светового вектора , т.е. определенную поляризацию, и свою начальную фазу, которая меняется от цуга к цугу по случайному закону. Световая волна, испускаемая нагретым телом, складывается из огромного числа цугов, испускаемых атомами тела. Атомы нагретого тела испускают несогласованные цуги, направление векторов в этих цугах самое различное. В результате свет, испущенный нагретым телом, не имеет определенной поляризации, такой свет называют естественным.
ГЕОМЕТРИЧЕСКАЯ ОПТИКА Это приближенное рассмотрение распространения света в предположении, что свет распространяется вдоль некоторых линий - лучей (лучевая оптика). В этом приближении пренебрегают конечностью длин волн света, полагая, что λ → 0. Геометрическая оптика позволяет во многих случаях достаточно хорошо рассчитать оптическую систему. Но в ряде случаев реальный расчет оптических систем требует учета волновой природы света, расчет в рамках геометрической оптики дает приближенный результат, иногда неверный даже на качественном уровне. Законы геометрической оптики Закон прямолинейного распространения света Закон прямолинейного распространения света утверждает, что в однородной среде свет распространяется прямолинейно. Если среда неоднородна, т.е. ее показатель преломления изменяется от точки к точке, или , то свет не будет распространяться по прямой. При наличии резких неоднородностей, таких как отверстия в непрозрачных экранах, границы этих экранов, наблюдается отклонение света от прямолинейного распространения. Закон независимости световых лучей утверждает, что лучи при пересечении не возмущают друг друга. При больших интенсивностях этот закон не соблюдается, происходит рассеяние света на свете.
|
||||
Последнее изменение этой страницы: 2016-08-14; просмотров: 213; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.191.9.9 (0.005 с.) |