Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Изучение внутренних напряжений в телахСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
С помощью поляризованного света Цель и задачи работы: Знакомство с методами получения и исследования поляризованного света, экспериментальная проверка закона Малюса, исследование внутренних напряжений в двутавровой балке методом фотоупругости.
Общие сведения Поляризация света – свойство света, проявляющееся в пространственно–временном упорядочении векторов напряженности электрического и магнитного полей электромагнитных волн. Применение поляризации света весьма разнообразно: исследование строения кристаллов, плавное изменение и регулировка интенсивности световых потоков, светоблокировка, высокочастотная модуляция света в оптических счетных машинах, сахариметрия, метод фотоупругости, применяемый для изучения распределения механической нагрузки в прозрачных моделях деталей машин и в строительстве и др. Согласно волновой теории свет представляет собой поперечные электромагнитные волны. Реальные источники света содержат множество возбужденных атомов, излучающих по данному направлению волны, плоскости колебаний которых произвольно ориентируются в пространстве. Свет, в котором наблюдаются различные ориентации плоскости колебаний, называется естественным светом (рисунок 1а). А свет, в котором колебания вектора совершаются в одной плоскости, называется линейно - поляризованным светом (рисунок 1в). На рисунке 1б показано расположение векторов напряженности электрического поля в частично поляризованном свете. Фотохимическое, физиологическое и фотоэлектрическое действие оказывает электрическое поле, поэтому вектор считается более важным. В дальнейшем мы не будем упоминать о магнитном поле, хотя оно неотделимо от электрического в электромагнитной волне и всегда вектор напряженности магнитного поля перпендикулярен вектору напряженности электрического поля. Рисунок 1 Изображения направлений векторов в пучке электромагнитных волн в: а – естественном; б - частично поляризованном и в - линейно поляризованном свете
Устройства, при помощи которых естественный свет превращается в поляризованный, называются поляризаторами. В качестве поляризаторов часто используются призмы Николя. Призма Николя вырезается из кристалла исландского шпата. Грани и углы призмы имеют определенные размеры (рисунок 2). Рисунок 2 Ход лучей в призме Николя:1 – кристалл исландского шпата, 2 – оптическая ось кристалла, 3 – обыкновенный луч (о), 4 – необыкновенный луч (е), 5 - склеивающий слой канадского бальзама
В призме распространяются две волны по разным направлениям. Обе волны поляризованы, но поляризованы они во взаимно перпендикулярных плоскостях. Один луч – обыкновенный (о), для него выполняется закон преломления света. Показатель преломления исландского шпата n0 для обыкновенного луча постоянен (n = 1,66). Другой луч – необыкновенный (е), он не подчиняется закону преломления, показатель преломления nе зависит от угла падения естественного света на грань призмы. Для показателей преломления nк, n0 и nе выполняется условие: n0 > nк > nе , где nк – показатель преломления склеивающего слоя (канадского бальзама). Обыкновенный луч, падая на слой клея, испытывает полное отражение и поглощается затемненной гранью призмы. Необыкновенный луч, преломившись, проходит через призму (рисунок 2). Причиной двойного лучепреломления является анизотропия поляризуемости молекул, которая ведет к тому, что диэлектрическая проницаемость, а, значит, и показатели преломления среды будут различны для разных направлений электрического вектора световой волны в кристалле. В учебных лабораториях для получения линейно поляризованного света используются доступные и дешевые приборы – поляроиды, в которых происходит явление оптического дихроизма, т.е. различного поглощения обыкновенного и необыкновенного лучей. Из поляроида выходит свет, поляризованный в одной плоскости, совпадающей с главной плоскостью поляроида. Закон Малюса Если на пути распространения поляризованного света, вышедшего из поляроида 1 (поляризатор), расположить поляроид 2 (анализатор), то можно определить степень поляризации света, падающего на анализатор (рисунок 3). Через анализатор пройдут только колебания с амплитудой: . (1) Другая часть - Е2 = Ео sin α поглотится анализатором. Интенсивность J световой волны равна энергии, переносимой волной за единицу времени через единицу площади поверхности, перпендикулярной к направлению распространения волны. J пропорциональна квадрату амплитуды , тогда от выражения (1) можно перейти к закону Малюса: , (2) где J – интенсивность света, вышедшего из анализатора, J0 – интенсивность света, падающего на анализатор, a - угол между главными сечениями поляризатора и анализатора. Рисунок 3 Схема опыта для проверки закона Малюса:1 - поляризатор; 2 - анализатор, 3 - изображение векторов Ео и Е1 в плоскости чертежа
Теория метода фотоупругости Тела оптически и механически однородные (изотропные) (стекло, целлулоид, оргстекло и др.) под влиянием деформации обнаруживают оптическую анизотропию, аналогичную оптической анизотропии кристалла. Роль оптической оси в деформированном образце выполняет линия действия силы. При освещении деформированного образца поляризованным светом наблюдается прямая зависимость между механическим напряжением и числом интерференционных полос, наблюдаемых на экране. Этот оптический метод, дающий возможность исследовать распределение механических напряжений в твердых телах, называется методом фотоупругости. В качестве объекта для исследования выбирают прозрачный образец из оргстекла, аналогичный по конструкции той детали машины или строения, которая подвергается нагрузке. Этот образец, помещенный в оправу с винтовым прессом, размещается на оптической скамье между скрещенными поляризатором и анализатором (рисунок 4). Из поляризатора 1 выходят плоско поляризованные лучи, которые попадают на образец 2, обладающий вследствие приложенной к нему сжимающей силы свойствами двойного лучепреломления. В образце 2 лучи раздваиваются и на анализатор 3 падают обыкновенный о и необыкновенный е лучи. Если толщина образца равна , то оптическая разность хода между обыкновенными и необыкновенными лучами зависит от разности показателей преломления обыкновенного n0 и необыкновенного nе лучей: .
Рисунок 4 Оптическая схема лабораторной установки для метода фотоупругости:1 – поляризатор, 2 – винтовой пресс с деформированным образцом, 3 – анализатор, 4 – экран
Анализатор 3 приводит эти колебания к одной плоскости и на экране 4 наблюдается картина интерференции. Установлено, что между оптической разностью хода D и механическим напряжением Р существует прямая пропорциональность: , (3) где С – коэффициент фотоупругости, характеризующий данное вещество, Р - напряжение (сила, действующая на единицу площади сечения образца). Полосы одинаковой окраски называются изохромами. Участки на картине, имеющие черную окраску, соответствуют областям образца, не испытывающим искажения структуры – это изохромы нулевого порядка. От этих черных точек идет отсчет порядков изохром – первого, второго, третьего и т.д. Причем, по одну сторону от черной линии – область сжатия (+ Р), а по другую – область растяжения (- Р). Чем сильнее деформация в образце, тем больше разность хода лучей, тем выше порядок максимума интерференции. В таблице 1 указаны последовательно изохромы различных порядков и соответствующая им разность хода. Таблица 1 Распределение изохром в интерференционной картине
|
||||||||||||||||||||
Последнее изменение этой страницы: 2016-08-12; просмотров: 565; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.144.96.108 (0.007 с.) |