Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Основные положения моделирования народного хозяйства как многоуровневой системы. Опыт разработки и применения систем моделей в прогнозировании развития народного хозяйства и его подсистем.Содержание книги
Поиск на нашем сайте
МОБ-25 Iкв →Х=Ах+У →У – конечный спрос [у1…у25] → IIкв [Квв; Кч; НПH]→мы можем определить валовый выпуск. IIIкв – валовая добавленная стоимость Прогнозные цены ЗП, Прибыль валовая, Налоги Снова строят 25 ур-й Мы видим распределение Вал доб ст-ти по всем 25 отраслям в текущих ценах. Транспонированный МОБ Получаем сбалансир цены по отраслям IVкв – Перераспределение валовой добавленной стоимости в прогнозных ценах (Валовая добавленная стоимость – это конечная продукция минус амортизация – в стоимостном виде должна равняться таблице без амортизации). В случае несбалансированности можно регулировать конечный спрос и вновь повторять расчёты, пока не будет достигнута сбалансированность между отраслями (такой подход – рекурсивная модель). Используется 25 уравнений, по которым определяют заданные коэффициенты в отраслях. Расчёт ведётся в текущих ценах. Таким образом, делается прогноз по соотношению коэффициентов (II шаг). Недостаток: отсутствует сбалансированность между 25 уравнениями (отрасли не связаны с собой, что нереально) и спрос на будущее прогнозировать трудно. Система взаимосвязанных уравнений (если бы они были связаны) называется VAR модель или система одновременных уравнений. Квв – коэффициент возмещения и выбытия Кч – чистые кап вложения НПH – непроизводственное потребление и накопление
Билет 31 Направления параметризации задачи ЛП для оценки устойчивости и чувствительности решений. Формулировка задачи с параметрами в функции цели, характеристика решений и свойства решающей функции. (C,X) – max (1), Ax≤b (2), x≥0 (3); C1X1→(C’1+tC1’’)X1, C2X3→(C’2+tC2’’)X2, C’1 – исходная цена, t – время, C1’’-новая цена. ∑(C’j+C’’jt)Xj→max, t-параметр. (1). Это параметрическая задача 1. Св-ва модели: F*(X,t)= ∑(C’j+C’’jt)Xj*-решающая функция. Теорема 1: Область разрешимости разбивается на конечное число интервалов и лучей; на каждом из них решающая ф-ция линейна относительно параметра t, угловые коэффициенты монотонно возрастают при переходе через границы, тюею не имеют выколотых точек. Примечание: Лучей может и не быть. Теорема 2. Каждой области устойчивости соответствует некоторое решение, оптимальное внутри этой области, включая ее граничные точки. Область неразрешимости если она есть всегда представляет левуй луч(-∞; о). Теорема 3. Задача 1 может быть исследована за конечное число шагов с помощью специальных процедур симплексного типа, однако вероятность образования циклов существенно выше чем в обычных задачах. Приближенные методы исследования этой задачи: 0≤t≤е”Сначала решим когда t=0, потом t1 и т.д. Такой метод называют методом последовательной оптимизации. Решения внутри областей устойчивости от параметра t не зависят, а вот оценки в области устойчивости зависят от параметра t линейно. y1+y02+ty1B. Прим: угловой коэффициент не обязательно изменяется строго монотонно. Задача 2: (C,X) – max, Ax≤b, x≥0, a11x1+a1nxn≤b1+tb1; для этой задачи решающая функция будет t. F(x,A,b(t)), F(X,t), 0≤t≤t”. Теорема 2 сохраняется, но ф-ция будет выпукла вверх. Это значит что угловые коэффициенты убывают, хотя и не строго монотонно. Оценки ресурсов не зависят от параметра t. Это полунепрерывная сверху функция. Компоненты решений зависят линейно.x1=(x11,x12,x1n), x1=(x11б+tx11∆) Задача 3. Общий случай. F(C(t), b(t),X) имеет место теорема 1, но решающая функция не является линейной, внутри каждой области устойчивости это функция второго порядка F(t)=Fл+tF1+t2F” Оценки все будут линейными фун-иями от параметра t.
Билет 32 Показатели экономики на макроуровне и их взаимосвязь в межотраслевом разрезе. Схема, система показателей и важнейшие соотношения межотраслевого баланса (МОБ). МОБ i=1,…n,-отрасли хозяйства,Хi-валовая продукция;j=1,…n-потребление отрасли.А-матрица прямых производственных затрат(квадратная матрица);aij-затраты вал.продукции i на единицу объема выпуска отрасли j.Y-конечная продукция(выходит за рамки производственого процесса). Y=Yамортизация(нокопление)+Yкап.вложения на расширение+Yнепрофил.потр-ие и накопл+Yзапасы;Х1=а11Х1+а12Х2+…+а1nХn – прямое производственное потребление; Х1+Y1 =баланс при замкнутой системе; Х1+Y1+Sвывоз-Sввоз,S+,S-=S1-сальдо ввоза вывоза. Произв-ая функция Леонтьева: . Свойства матрицы А:1).(Aij)<1;2).Σaij<1(для правильной матрицы);3).Матрица А д.б. продуктивной и не содержать циклов(все отрасли между собой обязательно взаимосвязаны). Продуктивность( при люб.заданном векторе конечной продукции Y всегда существует вектор валовой продукции Х,при котором решение системы уравнений существует). Х=А*Х – вектор валовой продукции;+Y-вектор конечной продукции;+S-сальдо ввоза-вывоза. Х(Е-А)=Y’;Е-единичная конечная матрица;Y’-скорректированная конечная продукция с учетом ввоза-вывоза .(Е-А)-1(Е-А)Х=Y(Е-А)-1àЕХ=Х=Y(Е-А)-1; (Е-А)-1=С -вектор(матрица)полных затрат(учитывает все прямые и косвенные затраты). Х=С*Y’. ЦЕЛЬ: Определить валовую продукцию каждой отрасли,при которых достигается заданный объем конечной продукции и одновременно одновременно оптимизировать некоторый критерий F(экономический).F1-min суммарных приведенных затрат (производственных критерий). F1àminΣcjxj – затраты будущих периодов.(1+Е)-t, t=1,2,3,4,5(лет)F2-max Yнпн(непроизв.потреб и накопленà)(социальный критерий) F3-min выбросы(экологический критерий) F3àminΣμisXj, μis -приведенная масса выбросов.ОГРАНИЧЕНИЯ:1).на невозобновляемые прир.ресурсы ΣqjrXj=<Qr, r=1,…k;2).по приросту мощностей.РЕЗУЛЬТАТ:1).оптимальный объем продукции для каждой отрасли Х1*,Х2*…Хn* при заданном Y и F*(F2*,F3*);2).материально-вещественные потоки(связи)между отраслями;3).удельные показатели для сравнения с мировыми(энергоёмкость,трудоемкость).
Билет 33
|
|||||||
Последнее изменение этой страницы: 2016-08-06; просмотров: 222; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.226.186.109 (0.007 с.) |