Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Двойственные оценки и условия сопряженности в задаче ЛП.Содержание книги
Поиск на нашем сайте
Для любой линейн модели м б построена двойств к ней.. Показатели Y1…Ym – двойственные оценки ресурсов. Другое название теневые, маржинальные, внутренние цены. Эти оценки характеризуют значимость ресурса для предприятия. Если какой-то ресурс в избытке, то его оценка равна 0, а если он использован полностью, то его оценка положительна. Оценка показывает на какую величину возрастет общий экономический результат при увеличении запаса соответств ресурса на единицу объема. В оптимальном решении оценки то же станут оптимальными. Оценки столбцов: Каждая оценка ∆j=1,n характеризует эффективность соответствующей технологии. ∑yi*ai1-c1≥0 – эффективность первой технологии. Значимость израсходов-х рес-ов всегда больше рез-та. Эффективной признается такая технология для которой выполняется строгое равенство, когда значимость равна цене. для текущей вершины если они не оптимальны могут встречаться отрицательные оценки внебазисных столбцов. Предполож что Ак оценка ∆к<0, нужно это устранить, а следовательно перейти на другую вершину соотв Ак это кандидат на ввод в базис. По спец формуле опред-ся среди базисных столбцов кандидат на выброс, если задача разрешима F(x)+ ∆F, ∆F=-∆k*xk – приращение ф-ции цели (на столько она увеличивается в соседней точке). Если кандидат на выброс Аг не находится то задача будет неразрешима из-за неограниченности ф-ции цели ФОРМАЛЬНО ПрямаяДвойственная ∑cjxj→max(j=1,n) ∑biyi→min (i=1,m) ∑aijxj≤bi (i=1,m) ∑aijyi≥Cj (j=1,n; i=1,m) –знач-ть всех рес-сов < Эф-та Y* =(y*1, y*2…y*n) – вектор оптим всегда рассм две связвнные модели: прямая и двойственная. С1х1+…СnXn→max. Двойственная к этой задаче минимизировать расход ресурсов на выпуск продукции, скалькулированный во внутренних ценах (оценка значимости). Получим Yi*, при прямой задаче получили бы Y*. F(xj*)=Q(Yi*). Теорема двойственности (8): Если разрешима прямая задача, то и разрешима двойственная и наоборот и для оптим решений F(xj*)=Q(Yi*). Теорема (8.2). Если прямая задача неразрешима из-за нарушения условий, то двойственная задача то же неразреш. из-за неграничености ф-ции цели и наоборот. Теорема Куна-Такера (9). (условие сопряженности): Х* и У* - реш прям и двоийств задачей. {X*= (x*1…x*j…x*n) {Y*= (y*1…y*i…y*m) Условия: I. (∑aijxj*-bi)y*i=0; i=1,m, j-=1,n; y*i≥0, II. (∑aijy*i-cj)x*j=0; i=1,m, j-=1,n (aijy*i-cj оценка рентабельности способов пр-ва), ∆j=0, xj*>0, ∆j>0, xj*=0 Если имеют место одно из условий сопряженности (а или б) то обе задачи разрешимы, а соответств решения оптимальны. Эконом истолкование: (I.) ∑aijxj*- оптим расход i-го рес-са, bi- его запас. - aijxj*≤0. если рес-в в оптим реш остался в избытке, то его двоийств оценка д=0, => он считается неэф-ным. - aijxj*<0 → y*i=0 если рес-с использован полностью. - aijxj*=0 → y*i>0 тогда двойств оценка >0 и количественно показывает его предельн эф-тьна V доп привлек рес-са. Из (I.) => что его оценкаи хар-ют одновременно эф-ть рес-са и его дефицитность. (II.) (∑aijy*i – суммарный расход всех рес-сов на ед V прод-ции j, оцененнй по их значимости. ∑aijy*i≥0 {…>0 – значимость используемых рес-сов больше, чем получ эф-т, => x*j=0, т.е. такой вид прод-ции в оптим плане не выгоден (не выпускается) {…=0 –знач-ть и эф-т совпадают => x*j>0, т.е. прод-т б выпускаться. Билет 16 Формулировка двух типов задач поиска решений при использовании детерминированного эквивалента стохастической задачи МП на максимум математического ожидания функции цели и на максимум вероятности (надежности) достижения заданного уровня функции цели. Рассматривается задача ЛП, в которой требуется найти максимум линейной формыL=(C,X)àMAX при условиях AX≤B и X≥0, причем элементы вектора ограничений, элементы матрицы условий и коэффициенты функции цели могут быть случайными числами как с известными характеристиками (случай риска), так и неизвестными (случай неопределенности). 1) все значения заменяются на мат. ожидании (среднее значение) – максимизация результата при заданной надежности P ≥ Р при Fà max Случаен только вектор С функции цели, остальная информация детерминирована. Обычный в этой ситуации подход - выбор в качестве критерия математического ожидания функции цели - сводит задачу к детерминированной (критерий имеет вид (^C,X)àMAX, где ~С - математическое ожидание вектора С). Если статистические характеристики вектора С неизвестны, то применяются различные гипотезы и оценки, а также методы анализа зоны неопределенности. 2) максимизация надежности при заданном уровне эффекта F ≥ F при maxP(F). Если случайны не только вектор С, но и другая информация: вектор В и матрица условий А, то необходимо уточнить исходную постановку задачи: определить, что понимается под допустимым решением (планом), а также смысловое содержание показателя качества решений. Р(SUM Aij*Xj <= Bi) >= Pi; i=1,...,m; 0 =< Pi <= 1 при этом часто матрица А предполагается фиксированной и случаен только вектор ограничений В; если множество возможных состояний природы конечно и известны характеристики (оценки значений и их вероятностей) для каждого элемента Вi (т.е. Bki и Hki для k=1,...,s), то можно определить значения ~Bi, которые удовлетворяют условию P(Bi(q)>=~Bi)>=Pi; действительно, для этого необходимо упорядочить значения Bki в порядке убывания и выбрать наименьшую группу, удовлетворяющую условию: вероятность попадания значения Bi в данную группу больше или равна Pi (для этого суммарная вероятность группы должна быть больше или равна Pi). Тогда задача будет сведена к детерминированной: (^C,X)àMAX AX<=~B, где ~B=(~B1,~B2,...,~Bm)
Билет 17
|
|||||||||||||
Последнее изменение этой страницы: 2016-08-06; просмотров: 284; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.137.181.194 (0.006 с.) |