Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Роль симпатической и парасимпатической нервной системы в регуляции сосудистого тонуса. Сосудодвигательный центр ствола мозга.

Поиск

Сужение артерий и артериол, снабженных преимущественно сим­патическими нервами (вазоконстрикция), было впервые обнаружено Вальтером (1842) в опытах на лягушках, а затем Бернаром (1852) в экспериментах на ухе кролика.

Главными сосудосуживающими нервами органов брюшной поло­сти являются симпатические волокна, проходящие в составе внут­ренностного нерва.

Симпатические сосудосуживающие нервы к конечностям идут в составе спинномозговых смешанных нервов, а также по стенкам артерий (в их адвентициальной оболочке). Поскольку перерезка симпатических нервов вызывает расширение сосудов той области, которая иннервируется этими нервами, считают, что артерии и артериолы находятся под непрерывным сосудосуживающим влияни­ем симпатических нервов.

Сосудорасширяющие эффекты (вазодилатация) впервые обна­ружили при раздражении нескольких нервных веточек, относящихся к парасимпатическому отделу нервной системы. Например, раздра­жение барабанной струны (chorda timpani) вызывает расширение сосудов подчелюстной железы и языка, п. cavernosi penis — расши­рение сосудов пещеристых тел полового члена.

В некоторых органах, например в скелетной мускулатуре, рас­ширение артерий и артериол происходит при раздражении симпа­тических нервов, в составе которых имеются, кроме вазоконстрик-торов, и вазодилататоры. При этом активация «-адренорецепторов приводит к сжатию (констрикции) сосудов. Активация р -адреноре­цепторов, наоборот, вызывает вазодилатацию. Следует заметить, что /3-адренорецепторы обнаружены не во всех органах.

Расширение сосудов (главным образом кожи) можно вызвать также раздражением периферических отрезков задних корешков спинного мозга, в составе которых проходят афферентные (чувст­вительные) волокна.

Эти факты, обнаруженные в 70-х годах прошлого столетия, вызвали среди физиологов много споров. Согласно теории Бейлиса и Л. А. Орбели, одни и те же заднекорешковые волокна передают импульсы в обоих направлениях: одна веточка каждого волокна идет к рецептору, а другая — к кровеносному сосуду. Рецепторные нейроны, тела которых находятся в спинномозговых узлах, обладают двоякой функцией: передают афферентные импульсы в спинной мозг и эфферентные импульсы к сосудам. Передача импульсов в двух направлениях возможна потому, что афферентные волокна, как и все остальные нервные волокна, обладают двусторонней про­водимостью.

Согласно другой точке зрения, расширение сосудов кожи при раз­дражении задних корешков происходит вследствие того, чо в рецеп-торных нервных окончаниях образуются ацетилхолин и гистамин, ко­торые диффундируют по тканям и расширяют близлежащие сосуды.

Сосудодвигательный центр

В. Ф. Овсянниковым (1871) было установлено, что нервный центр, обеспечивающий определенную степень сужения артериального русла — сосудодвигательный центр — находится в продолго­ватом мозге. Локализация этого центра определена путем перерезки ствола мозга на разных уровнях. Если перерезка произведена у собаки или кошки выше четверохолмия, то АД не изменяется. Если перере­зать мозг между продолговатым и спинным мозгом, то максимальное давление крови в сонной артерии понижается до 60—70 мм рт. ст. От­сюда следует, что сосудодвигательный центр локализован в продолго­ватом мозге и находится в состоянии тонической активности, т. е. дли­тельного постоянного возбуждения. Устранение его влияния вызывает расширение сосудов и падение АД.

Более детальный анализ показал, что сосудодвигательный центр продолговатого мозга расположен на дне IV желудочка и состоит из двух отделов — прессорного и депрессорного. Раздражение прессорно­го отдела сосудодвигательного центра вызывает сужение артерий и подъем, а раздражение второго — расширение артерий и падение АД.

Влияния, идущие от сосудосуживающего центра продолговатого мозга, приходят к нервным центрам симпатической части вегета­тивной нервной системы, расположенным в боковых рогах грудных сегментов спинного мозга, регулирующих тонус сосудов отдельных участков тела. Спинномозговые центры способны через некоторое время после выключения сосудосуживающего центра продолговатого мозга немного повысить давление крови, снизившееся вследствие расширения артерий и артериол.

Кроме сосудодвигательных центров продолговатого и спинного мозга, на состояние сосудов оказывают влияние нервные центры промежуточного мозга и больших полушарий.

 


 

СЕНСОРНЫЕ СИСТЕМЫ

95.Классификация рецепторов.Механизмы преобразования энергии действующего раздражителя в рецепторный и генераторный потенциал. Адаптация рецепторов.

1. Механорецепторы приспособлены к восприятию механической энергии раздражающего стимула. Механорецепторы представляют перифе­рические отделы соматической, скелетно-мышечной, слуховой и вес­тибулярной оенсорных систем, а также боковой линии.

2. Терморецепторы воспринимают температурные раздражения. Они объединяют рецепторы кожи и внутренних органов, а также центральные термочувствительные нейроны.

3. Хеморецепторы чувствительны к действию химических агентов. У наземных животных они образуют периферические отделы обоня­тельной и вкусовой сенсорных систем, тогда как для водных животных эти понятия теряют смысл, что заставляет использовать термин хемо-рецепция или химическая чувствительность. 4. 4. Фоторецепторы воспринимают световую энергию. Они пред­ставлены цилиарными рецепторами, т. е. производными клетки со жгутиком, и рабдомерными, у которых жгутик отсутствует, а собственно фоторецепторная часть клетки образована совокупно­стью микровилл.

5. Электрорецепторы чувствительны к действию электромаг­нитных колебаний. Они обнаружены в составе боковой линии у круглоротых, пластиножаберных, многих костистых рыб и некоторых хвостатых амфибий.

6. Болевые (ноцицептивные) рецепторы воспринимают болевые раздражения.

К первичным относят такие рецепторные аппараты, у которых действие адекватного стимула осуществляется непосредственно пе­риферическим отростком сенсорного нейрона, который, таким об­разом, первично встречается с раздражителем. Этот сенсорный нейрон находится на периферии, а не в центральной нервной системе, и представляет собой биполярный нейрон, на одном полюсе которого расположен дендрит с ресничкой или дендритными отростками, а на другом — центральный отросток — аксон, по которому возбуждение передаете в соответствующий центр.

К вторичным рецепторам относят такие рецепторы, у котор между окончаниями сенсорного нейрона и точкой приложения стимула располагается дополнительная специализированная (рецептирующая) клетка ненервного происхождения. Возбуждение,вознкающее в рецептирующей клетке, передается через синапс на с сорный нейрон.

Адаптация рецепторов. При длительном раздражении возбуждение влабеет в большей или меньшей степени. Она проявляется по отношению к воздействию постоянного раздражителя.

Мех- мы преобр энергии

1.Через вспомогательные структуры внешний стимул доходит до ре-цептирующего субстрата, определяющего модальность рецептора, и взаимодействует с ним. Этот первый этап специфического взаимодействия между стимулом и специальными рецепторами на моле­кулярном уровне еще недостаточно изучен: рецепторные участки очень малы, часто труднодоступны для исследования, а сами про­цессы взаимодействия протекают очень быстро. Однако каковы бы ни были эти механизмы, следствием их является изменение про­ницаемости плазматической мембраны рецептора.

2. изменение мембранной проницаемости. Вследствие этого про­исходит возникновение ионного тока через мембрану (в основном для ионов Nа, а также и для других ионов), создающего на ней локальный электрический потенциал. Это изменение мембранного потенциала рецепторной клетки, возникающее под воздействием раздражителя, называется рецепторным потенциалом (РП). В случае деполяризации мембраны рецептора происходит уве­личение проницаемости каналов мембраны для ионов, тогда как при гиперполяризации — закрытие этих каналов. Важно подчерк­нуть, что проницаемость мембраны изменяется лишь в той ее точке, где произошло взаимодействие стимула с рецептирующим субстра­том. Именно здесь и развивается РП.Во время возникновения РП внутрь рецепторной клетки входит положительный ток, создаваемый ионами Nа или Са +. Для того чтобы цепь была замкнута, ток должен выходить через мембрану наружу. Однако, так как выход его через тот же участок, где находится вход, невозможен, ток пассивно распространяется вдоль волокна и выходит из последнего в области наименьшего сопротивления. Расстояние, на которое распространяется этот ток по волокну рецептора, определяют три фактора: сопротивление цитоплазмы, сопротивление клеточной мембраны и диаметр дендрита. Чем меньше сопротивления цитоплаз­мы и чем больше диаметр дендрита, тем легче и дальше ток распрост­раняется через внутреннюю среду рецепторной клетки.

Распространение электрического тока, зависящее от постоянного сопротивления и емкости мембраны, называется электротоном. Поэ­тому пассивное распространение РП вдоль нервного волокна называют электротоническим.

3. Электротоническое распространение РП через дендриты и тело клетки к аксону.

4. перекодировании переданного электрического ответа рецептора в импульсный разряд, или потенциалы действия (ПД), в афферен­тном нервном волокне, который несет в себе информацию для остальных отделов нервной системы.

98.Зрительный анализатор представляет собой совокупность воспринимающих, проводящих и анализирующих структур, осуществляющих функцию зрения. Сетчатка глаза чувствительна к световому излучению (электромагнитным волнам с длиной волны 390 – 760 нм) Считается что с помощью зрительного анализатора человек получает до 80—90 % всей информации об окружающем мире.

Рецепторный отдел включает сетчатую оболочку глаза, проводниковый отдел представлен зрительным нервов (II пара), центральный отдел расположен на разных уровнях головного мозга (латеральное коленчатое тело таламуса, корковый отдел в затылочной области, 17,18 и 19 поля по Бродману).

Орган зрения глаз, состоит из глазного яблока, защитных приспособлений (наружные оболочки склера и роговица, слезный аппарат, веки, ресницы, брови) и моторного (двигательного) аппарата.

Преломляющая система глаза (роговица, стекловидное тело и хрусталик) построена в согласии с законами оптики. Основной линзой оптической системы глаза служит хрусталик, двояковыпуклая линза с переменным фокусным расстоянием (60±14 диоптрий). Процесс изменения кривизны хрусталика называется аккомодацией и осуществляется непроизвольно.Аккомодацию осуществляет автономная нервная система, волокна которой иннервируют ресничную мышцу.

Хрусталик из-за эластичных свойств способен самопроизвольно становиться более выпуклым, уплощение его зависит от тяги, создаваемой ресничной мышцей, соединенной с боковой поверхностью хрусталика цинновой связкой. Иннервация цилиарной мышцы осуществляется симпатическими и парасимпатическими нервами. Импульсация, поступающая по парасимпатическим волокнам глазодвигательного нерва, вызывает сокращение мышцы (рассматривание далеких предметов). Симпатические волокна, отходящие от краниального шейного ганглия, вызывают ее расслабление (для зрения вблизи). Контроль активности вегетативных нервов осуществляется корой больших полушарий мозга.

При нормальной рефракции глаза лучи от далеко расположенных предметов после прохождения через светопреломляющую систему глаза собираются в фокусе на сетчатке в центральной ямке.

Автономная нервная система участвует и в оптимизации освещенности сетчатки, что достигается изменением просвета зрачка. Размер зрачка определяется активностью мышц радужной оболочки. Сокращение кольцевой мышцы зрачок суживает, сокращение радиальной, или дилататора – расширяет. Кольцевая иннервируется парасимпатическими двигательными волокнами ядра Эдингера-Вестфаля и цилиарного ганглия. Расширение зрачка (сокращение радиальной мышцы) осуществляется симпатическими влияниями, происходящими из нижних шейных и верхних грудных сегментов спинного мозга (преганглионары) и краниального шейного ганглия (ганглионарные нейроны). Просвет зрачка увеличивается при эмоциональном напряжении (влияние гормонального пула катехоламинов).

Строение сетчатки.

Пигментный слой. Этот слой образован одним рядом эпителиальных клеток, содержащих большое количество различ­ных внутриклеточных органелл, включая меланосомы, придающие этому слою черный цвет. Этот пигмент, называемый также экра­нирующим пигментом, поглощает доходящий до него свет, пре­пятствуя тем самым его отражению и рассеиванию, что способ­ствует четкости зрительного восприятия. Клетки пигментного эпи­телия имеют многочисленные отростки, которые плотно окружают светочувствительные наружные сегменты палочек и колбочек, Пигментный эпителий играет решающую роль в целом ряде функ­ций, в том числе в ресинтезе (регенерации) зрительного пигмента после его обесцвечивания, в фагоцитозе и переваривании обломков наружных сегментов палочек и колбочек, иными словами, в меха­низме постоянного обновления наружных сегментов зрительных клеток, в защите зрительных клеток от опасности светового по­вреждения, а также в переносе к фоторецепторам кислорода и других необходимых им веществ. Следует отметить, что контакт между клетками пигментного эпителия и фоторецепторами доста­точно слабый.

Фоторецепторы. К пигментному слою изнутри примы­кает слой фоторецепторов: палочек и колбочек1. В сетчатке каж­дого глаза человека находится 6—7 млн колбочек и НО—123 млн палочек. Они распределены в сетчатке неравномерно. Центральная ямка сетчатки (fovea centralis) содержит только колбочки (до 140 тыс. на 1 мм2). По направлению к периферии сетчатки их число уменьшается, а число палочек возрастает, так что на даль­ней периферии имеются только палочки. Колбочки функциони­руют в условиях больших освещенностей, они обеспечивают днев­ное. и цветовое зрение; намного более светочувствительные па­лочки ответственны за сумеречное зрение.

Цвет воспринимается лучше всего при действии света на цент­ральную ямку сетчатки, где расположены почти исключительно колбочки. Здесь же и наибольшая острота зрения. По мере удале­ния от центра сетчатки восприятие цвета и пространственное раз­решение становятся все хуже. Периферия сетчатки, где находятся исключительно палочки, не воспринимает цвета. Зато световая чувствительность колбочкового аппарата сетчатки во много раз меньше, чем палочкового, поэтому в сумерках из-за резкого пони­жения «колбочкового» зрения и преобладания «периферического» зрения мы не различаем цвет («ночью все кошки серы»).

Нарушение функции палочек, возникающее при недостатке в пище витамина А, вызывает расстройство сумеречного зрения — так называемую куриную слепоту: человек совершенно слепнет в сумерках, но днем зрение остается нормальным. Наоборот, при поражении* колбочек возникает светобоязнь: человек видит при слабом" свете, но слепнет при ярком освещении. В этом случае может развиться и полная цветовая слепота — ахромазия.

Строение фоторецепторной клетки. ганглион клетка., амакриновая клетка, горизон клетка, биполярн клетка, родопсин.

Нервные механизмы зрения

Нейроны сетчатки. Фоторецепторы сетчатки синапти-чески связаны с биполярными нейронами (см. рис. 14.6, Б). При действии света уменьшается выделение медиатора (глутамата) из фоторецептора, что приводит к гиперполяризации мембраны бипо­лярного нейрона. От него нервный сигнал передается на ганглиоз-ные клетки, аксоны которых являются волокнами зрительного нерва. Передача сигнала как с фоторецептора на биполярный ней­рон, так и от него на ганглиозную клетку происходит безымпульс­ным путем. Биполярный нейрон не генерирует импульсов ввиду предельно малого расстояния, на которое он передает сигнал.

На 130 млн фоторецепторных клеток приходится только 1 млн 250 тыс. ганглиозных клеток, аксоны которых образуют зритель­ный нерв. Это значит, что импульсы от многих фоторецепторов сходятся (конвергируют) через биполярные нейроны к одной ганг-лиозной клетке. Фоторецепторы, соединенные с одной ганглиозной клеткой, образуют рецептивное поле ганглиозной клетки. Рецеп­тивные поля различных ганглиозных клеток частично перекрывают друг друга. Таким образом, каждая ганглиозная клетка суммирует возбуждение, возникающее в большом числе фоторецепторов. Это повышает световую чувствительность, но ухудшает пространствен­ное разрешение. Лишь в центре сетчатки, в районе центральной ямки, каждая колбочка соединена с одной так называемой карли­ковой биполярной клеткой, с которой соединена также всего одна ганглиозная клетка. Это обеспечивает здесь высокое пространст­венное разрешение, но резко уменьшает световую чувствитель­ность.

Взаимодействие соседних нейронов сетчатки обеспечивается горизонтальными и амакриновыми клетками, через отростки ко­торых распространяются сигналы, меняющие синаптическую пе­редачу между фоторецепторами и биполярными клетками (гори­зонтальные клетки) и между биполярными и ганглиозными клет­ками (амакриновые клетки). Амакриновые клетки осуществляют боковое торможение между соседними ганглиозными клетками.

Кроме афферентных волокон, в зрительном нерве есть и цент­робежные, или эфферентные, нервные волокна, приносящие к сет­чатке сигналы из мозга. Полагают, что эти импульсы действуют на синапсы между биполярными и ганлиозными клетками сетчат­ки, регулируя проведение возбуждения между ними.

Нервные пути и связи в зрительной системе. Из сетчатки зри­тельная информация по волокнам зрительного нерва (II пара черепных нервов) устремляется в мозг. Зрительные нервы от каж­дого глаза встречаются у основания мозга, где формируется их частичный перекрест (хиазма). Здесь часть волокон каждого зри­тельного нерва переходит на противоположную от своего глаза сторону. Частичный перекрест волокон обеспечивает каждое по­лушарие большого мозга информацией от обоих глаз. Проекции эти организованы так, что в затылочную долю правого полушария поступают сигналы от правых половин каждой сетчатки, а в левое полушарие — от левых половин сетчаток.

После зрительного перекреста зрительные нервы называют зрительными трактами. Они проецируются в ряд мозговых струк­тур, но основное число волокон приходит в таламический подкор­ковый зрительный центр — латеральное, или наружное, коленчатое тело (НКТ). Отсюда сигналы поступают в первичную проекцион­ную область зрительной зоны коры (стриарная кора, или поле 17 по Бродману). Вся зрительная зона коры включает несколько полей, каждое из которых обеспечивает свои, специфические функции, но получает сигналы от всей сетчатки и в общем сохра­няет ее топологию, или ретинотопию (сигналы от соседних участ­ков сетчатки попадают в соседние участки коры).



Поделиться:


Последнее изменение этой страницы: 2016-08-06; просмотров: 1073; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.147.48.105 (0.012 с.)