Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Основные этапы метода конечных элементов (мкэ).↑ ⇐ ПредыдущаяСтр 20 из 20 Содержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Библиотека конечных элементов, препроцессор, решатель, постпроцессор. Библиотеки конечных элементов содержат их модели - матрицы жесткости. Модели конечных элементов различны для разных задач, разных форм конечных элементов, разных наборов координатных функций. Исходными данными для препроцессора являются геометрическая модель объекта, чаще всего получаемая из подсистемы конструирования. Основная функция препроцессора - представление исследуемого объекта (детали) в сеточном виде, т.е. в виде множества конечных элементов. Решатель - это программа, которая собирает модели отдельных конечных элементов в общую систему алгебраических уравнений и решает эту систему одним из методов разреженных матриц. Постпроцессор служит для визуализации результатов решения в удобной для пользователя форме. Основным методом для проведения различных видов анализа является метод конечных элементов. Первое применение этого метода относится к интервалу 1950-1960 года; в этот период он был использован для проведения анализа в строительной механике и самолетостроении, в настоящее время он получил особую популярность в автомобильной промышленности. Этот метод получил популярность и в таких сферах, как решение инженерных задач из области статики, динамики, электроники, радиационного анализа. С его помощью можно решать задачи следующего характера: " Анализ устойчивости навигационной системы к вибрациям; " Способность монтажной платы выдерживать высокие температуры; " Моделировать взрывы; " Оптимизировать конструкцию. Метод конечных элементов позволяет конструктору успешно решать задачи расчета сложных конструкций или деталей, путем разбиения их на более мелкие части - конечные элементы. Эти элементы часто называют дискретными, а процесс их выделения - дискретизацией формы. После разбивки дальнейшее расчет на нагрузку проводятся уже для отдельных конечных элементов, каждый из которых вносит свой вклад в характеристику прочности детали. Точки, ограничивающие элемент называются узлами и вместе с проходящими через них линиями образуют конечно-элементную сетку. Для двумерных областей наиболее часто используются элементы в форме треугольников или четырехугольников; как с прямо-, так и с криволинейными границами, чтобы в дальнейшем с достаточной степенью точности аппроксимировать границу любой формы. Для трехмерных областей наиболее употребимы элементы в форме тетраэдра и параллелипипеда, которые также могут иметь прямо- или криволинейные границы. В общем случае метод конечных элементов состоит из 4 этапов: 1. Выделение конечных элементов (разбиение области на конечные элементы); Разбиение области на элементы обычно начинают от её границы, с целью наиболее точной аппроксимации формы границы. Затем производится разбиение внутренних областей. Часто разбиение области на элементы производят в несколько этапов. Сначала разбивают на крупные части, границы между которыми проходят там, где изменяются свойства материалов, геометрия, приложенная нагрузка (другие физические величины). Затем каждая подобласть разбивается на элементы. Стараются избегать резкого изменения размеров конечных элементов на границах подобластей. После разбиения области на конечные элементы осуществляют нумерацию узлов, причем порядок нумерации имеет существенное значение, так как влияет на эффективность последующих вычислений. Это связано со следующим: матрица коэффициентов системы линейных алгебраических уравнений, к которым приводит метод конечных элементов, является сильно разреженной матрицей ленточной структуры. Ненулевые элементы такой матрицы располагаются параллельно главной диагонали. Обозначим через число, представляющее наибольшую разность между номерами ненулевых элементов в строке. Число называется шириной полосы. Чем меньше ширина полосы, тем меньший объем памяти требуется для хранения матрицы при реализации метода конечных элементов в САПР, и тем меньше затраты машинного времени на решение результирующей системы уравнений. Ширина полосы зависит от числа степеней свободы узлов и способа нумерации последних. Если максимальную разность между номерами узлов для конечных узлов обозначить через, а число степеней свободы -, то. Информация о способе разбиения на конечные элементы и нумерация узлов является исходной для всех последующих этапов алгоритма метода конечных элементов. При этом требуется указывать не только номер, но и координаты каждого узла, его принадлежность к определенным конечным элементам, информацию о соединении элементов между собой, значения физических параметров объекта в пределах каждого элемента. 2. Определение аппроксимирующей функции для каждого элемента. На этом этапе искомая непрерывная функция аппроксимируется кусочно-непрерывной, определенной на множестве конечных элементов. Эту процедуру можно выполнить один раз для типичного элемента области и затем полученную функцию использовать для остальных элементов области того же вида. В качестве аппроксимирующей функции элементов чаще всего используют полиномы, которые подбираются так, чтобы обеспечить непрерывность искомой функции в узлах и на границах элементов. 3. Объединение конечных элементов в ансамбль. На этом этапе уравнения, относящиеся к отдельным элементам, объединяются в ансамбль, то есть в систему алгебраических уравнений. Полученная система является моделью искомой непрерывной функции. Мы получаем матрицу жесткости. 4. Решение полученной системы алгебраических уравнений. Реальная конструкция аппроксимируется многими сотнями конечных элементов, возникают системы уравнений со многими сотнями и тысячами неизвестных. Решение таких систем уравнений - основная проблема реализации метода конечных элементов. Методы решения зависят от размера разрешающей системы уравнений. В связи с большой размерностью и сильной разреженностью матрицы коэффициентов системы для реализации метода конечных элементов в САПР разработаны специальные способы хранения матрицы жесткости, позволяющее уменьшить необходимый для этого объем оперативной памяти. Матрицы жесткости используются в каждом методе прочностного расчета, используя конечную элементную сетку. Название матрицы жесткости пришло из строительной механики, где МКЭ начал использоваться раньше, чем в других областях техники. Для решения систем уравнений применяются методы двух групп: прямые методы (метод Гаусса), косвенные методы, когда решение определяется на основе последовательной аппроксимации (метод Гаусса-Зейделя). ПРИМЕРЫ ПАКЕТОВ ИНЖЕНЕРНОГО АНАЛИЗА (CAE СИСТЕМЫ). Главный ПП - MSC - MSE/Nastran. Эта система обеспечивает полный набор расчетов, включая расчет напряженно деформирующего состояния, собственных частот и форм колебаний, анализ устойчивости, решение задач теплопередачи, спектральный анализ. Тесная связь этого ПП с MSC/AKIES и MSE/PATRAN позволяет формировать полностью интегрированную среду для моделирования и анализа результатов. Все ведущие производители пре - и постпроцессоров, а также САПР, предусматривают прямые интерфейсы с этой средой. Компания MDI известна как разработчик программного комплекса имитационного моделирования механических систем ADAMS. Сегодня продукция ADAMS составляет около 65% мирового рынка программных средств кинематического и динамического анализа механических систем. Система ADAMS нашла широкое применение в таких приложениях как исследование динамики полета летательных аппаратов, анализ функционирования лентопротяжного механизма видеомагнитофона, оптимизация техники наведения понтонных мостов, функционирования роботов и манипуляторов, расследование ДТП. Еще один интегрированный комплекс: I-DEAS MASTER SERIAS (SDRC - Structural Dynamics Research Corporation). Он позволяет создавать конечно-элементные модели как отдельных деталей, так и сборок. Нагрузки и граничные условия связываются с геометрической моделью и сеткой, что позволяет обновлять их автоматически с изменением модели или сетки. 43. Моделирование технологических процессов обработки с использованием расширения Simulik+ системы MatLAB. Simulink - это платформа для эмуляции и модельного проектирования динамических систем. Она обеспечивает интерактивную графическую среду и настраиваемый набор библиотек блоков, которые позволяют с высокой точностью проектировать, моделировать, реализовывать и тестировать системы управления, обработки сигналов, связи и т. п. Версия Simulink 6 улучшает производительность, скорость реакции, точность моделирования и эффективность протекания процессов при моделировании больших систем. Новые возможности: 1. Компонентное моделирование больших систем 2. Возможность сегментирования модели на несколько файлов, каждый из которых представляет собой отдельную модель 3. Возможность моделировать, тестировать и реализовывать каждый компонент отдельно, еще до его вставки в общую модель системы 4. Улучшенная интеграция моделей с существующими системами управления файлами и контроля версий 5. Инкрементальная загрузка моделей и генерация кода 6. Увеличена скорость обновления диаграмм и моделирования для больших моделей 7. Созданы рабочие пространства моделей (Model Workspaces), обеспечивающие отдельные области памяти для хранения параметров и переменных каждой модели 8. Улучшена поддержка шин для задания интерфейсов, поддержки операций над сигналами шины и описания шин как структур при генерации кода 9. Реализована интеграция Simulink и Stateflow 10. Унифицированный браузер моделей (Model Explorer) позволяет просматривать, создавать, конфигурировать все сигналы, параметры и свойства моделей 11. Объединены и унифицированы настройки параметров моделирования и генерации кода 12. Введена поддержка создания и сохранения конфигураций параметров моделирования и генерации кода 13. Введена возможность управления данными и их визуализацией 14. Добавлены новые объекты данных для задания структур, шин и типов данных 15. Введены возможности протоколирования данных и добавления контрольных точек без добавления блоков к модели 16. Средство Signal & Scope Manager позволяет подключать к модели источники и приемники сигналов без добавления блоков 17. Поддержка языка MATLAB 18. Генерация C-кода и реализация приложений на основе внедряемых MATLAB-алгоритмов 19. Улучшена функциональность для создания S-функций в виде M-файлов.
|
||||
Последнее изменение этой страницы: 2016-07-16; просмотров: 3048; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.144.37.178 (0.01 с.) |