Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Строение и функционирование генов рРНКСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Итак, в ядрышковых организаторах определенных хромосом локализованы места множественных сгруппированных вместе генов рибосомной РНК. Но как уже говорилось, существует 4 типа молекул рибосоной РНК, каждый из которых в полной эукариотической рибосоме представлен один раз. Значит ли это, что для каждой из этих РНК (28S рРНК, 18S рРНК, 5,8S рРНК, 5S рРНК) должен существовать отдельный ген, было долгое время неясным. Не понятным было также, как осуществляется в клетках одновременное сбалансированное образование этих разных рРНК. Этот вопрос был решен при исследовании динамики синтеза рибосомных РНК. Было обнаружено, что при использовании импульсной короткой метки среди клеточных РНК обнаруживается быстро синтезирующая РНК с высокой скоростью седиментации, тяжелая 45S РНК. Если после появления этой 45S РНК продолжать наблюдать за распределением метки во фракциях РНК, но уже в отсутствие меченных предшественников, то можно видеть, что по мере убывания метки в зоне 45S РНК, она начинает появляться и стабильно накапливаться в зонах 28S, 18S и 5,8S рибосомных РНК. Эти данные говорили о том, что при синтезе рибосомных РНК сначала образуется гигантская молекула-предшественник (45S РНК), которая затем дает начало основным молекулам рибосомной РНК. Было найдено, что молекула 45S РНК содержит около 13 х 103 оснований, имеет массу около 4,6 х 106, и может быть длиной 2-5 мкм. Явление распада молекулы 45S рРНК на фрагменты, соответствующие размерам 28S, 18S и 5,8S РНК, получил название "процессинг" или созревание. Во время процессинга происходит разрыв предшественника на три фрагмента и кроме того наблюдается значительная деградация РНК (около 50%, т.е. 6000 нуклеотидов). Кроме этих данных было вычислено, что молекула 5S РНК синтезируется независимо от 45S РНК и локализация гена 5S рРНК не связана с ядрышковым организатором. Почти одновременно с получением этих биохимических данных О. Миллеру (1969) удалось с помощью электронного микроскопа увидеть работающие рибосомные гены. Для этого были под световым микроскопом вручную выделены ядра из средних ооцитов тритона, микроиглами была разорвана ядерная оболочка и в микропипетку были втянуты многочисленные амплифицированные ядрышки. Такая капля, содержащая ядрышки и кариоплазму, была перенесена в раствор низкой ионной силы со щелочным значением среды. Этот раствор наслаивался на раствор сахарозы с формалином, находящийся в микроячейке центрифужной пробирки, на дне микроячейки помещалась сеточка с формваром для электронной микроскопии. Действие низкой ионной силы в щелочной среде приводило к набуханию и диспергированию выделенных ядрышек, они разрыхлялись настолько, что становились плохо различимыми в световом микроскопе. При центрифугировании такие набухшие ядрышки проходили через слой сахарозы, еще больше расправлялись и фиксировались в формалине. Наконец они достигали дна микроячейки и распластывались на формваровой подложке. После этого сеточки вынимались, обезвоживались, оттенялись металлом и просматривались в электронном микроскопе (рис. 83, 97а). На таком препарате были видны сложно изогнутые и перепутанные длинные осевые молекулы ДНК, на которых через равные промежутки располагались фибриллярные зоны, имеющие вид "елочек". Длина фрагмента ДНК, занятого такой "елочкой" была постоянной и равнялась 5 мкм. На этом отрезке располагалось около 100 плотных гранул величиной около 20 нм, от каждой из которых отходила в сторону тонкая изогнутая нить. Величина такой нити была минимальной на одном конце такого отрезка и максимальной на другом. Эти извитые латеральные нити и образовывали структуру типа "елочки". Было доказано, что крупные гранулы на нити ДНК представляют собой молекулы РНК-полимеразы I, ответственной за синтез рРНК, а боковые изогнутые нити - транскрипты, состоящие из синтезируемых молекул РНК. Самые длинные транскрипты находились на одном конце "елочки", соответствовали 45S предшественнику рРНК. Следовательно, синтез рРНК начинался на конце отрезка с короткими боковыми нитями, и заканчивался на участке с длинными нитями РНК. Такой участок ДНК, на котором были видны молекулы рРНК в процессе их удлинения, получил название транскрипционной единицы. Между транскрипционными единицами располагались участки ДНК, лишенные гранул РНК-полимеразы I и транскриптов. Это - зоны т.н. спейсеров, которые не транскрибируются, и, более того, на таких препаратах они имеют нуклеосомное строение, тогда как транскрипционные единицы свободны от нуклеосом. Величина таких спейсерных участков может варьировать не только в данной клетке, но быть различной у разных видов. Длина боковых фибрилл была в 5-10 раз короче, чем 45S РНК, из-за того, что эта новосинтезированная РНК связана с белками, образуя рибонуклеопротеидный тяж, предшественник рибосом. Исходя из этих работ стало ясно, что рибосомный ген состоит из двух участков: нетранскрибируемая последовательность ДНК (nts) - спейсер и транскрипционная единица. В состав транскрипционной единицы входят участки, соответствующие 28S, 18S и 5,8S рРНК, разделенные вставками, которые деградируют при процессинге 45S РНК. Расшифровка структуры рибосомных генов различных эукариотических объектов показала удивительно универсальный тип их строения: 3' nts - промотор- tse - 18S рРНК - tsi1 - 5,8S рРНК - tsi2 - 28S рРНК 5' где nts - нетранскрибируемые последовательности ДНК спейсерного участка, ts - транскрибируемые последовательности ДНК (внешняя и две внутренние), и участки, соответствующие зрелым рибосомным РНК. В состав транскрипционной единицы входит весь ген за исключением спейсерного участка. Такая структура рибосомного гена практически одинакова для всех эукариотических организмов (рис. 84). Вариабельными являются как нетранскрибируемые (спейсерные) участки, так и транскрибируемые вставки (ts), которые не входят в состав зрелых рРНК. Итак три основные молекулы рРНК синтезируются на одной транскрипционной единице. Что же касается молекулы 5S рРНК, то она к этому гену никакого отношения не имеет: 5S рРНК синтезируется на отдельных генах, локализованных не в зонах ядрышковых организаторов, даже на совсем иных хромосомах при участии РНК-полимеразы III. Так у человека основная масса генов 5S рРНК находится на I хромосоме, более мелкие кластеры - на 9 и 16 хромосомах. У ксенопуса гены 5S рРНК расположены в теломерных участках большинства хромосом. Гены 5S рРНК, тоже множественные, также собраны в кластеры, но их число выше, чем у остальных генов рРНК. Так у человека их насчитывается до 2000, у ксенопуса - 24000, у гребенчатого тритона - 32000. Есть объекты и с меньшим их числом: Drosophila - 320; крыса - 830. У нейроспоры и дрожжей число генов 5S рРНК одинаковое с числом других рибосомных генов, т.к. участок 5S рРНК включен и транскрибируется в спейсерной зоне. Транскрипция рРНК идет с помощью двух ферментов: РНК-полимеразы I, которая участвует в синтезе 45S предшественника рРНК и РНК-полимеразы III, ответственной за синтез 5S рРНК. Матрицей для синтеза рРНК по определению должна быть ядрышковая ДНК. В изолированном р-хроматине обнаружены гистоны, негистоновые белки и белки рибосом. Так в р-хроматине обнаружены основные сердцевинные (коровые) гистоны, но их количество составляет только 40% по сравнению с таковым в тотальном хроматине. Первичные транскрипты (морфологически представлены в виде латеральных филаментов на “елочках”, образующихся на активных транскрипционных единицах) прогрессивно увеличиваются в длину по мере прохождения РНК-полимеразы I вдоль всего транскрипционного участка гена, начиная с точки начала репликации до терминального участка. Скорость роста цепи пре-рРНК составляет около 20-30 нуклеотидов/сек., т.е. весь синтез 45S рРНК занимает около 5-10 минут. На каждой транскрипционной единице располагается множество (50-100) молекул РНК-полимеразы I, тем самым на каждом гене одновременно происходит синтез множества молекул пре-рРНК, которые находятся на разных стадиях роста полинуклеотидной цепи (рис. 85). Максимальной величины пре-рРНК достигает вблизи терминального участка, где ее молекулярный вес достигает 4,5 х 106 Д (для млекопитающих), а длина должна соответствовать 5,2 мкм. На самом же деле длина латерального транскрипта в 5-10 раз короче этой величины. Это связано с тем, что по мере роста транскрипта он связывается сразу же с белками, образуя в конечном участке транскрипции рибонуклеопротеид с коэффициентом седиментации 80S. Такие 80S рРНП составляют до 20% от всех РНП ядрышка. Большая часть белков, которые связываются с 45S РНК являются белками, входящими в состав малой и большой субъединиц зрелых рибосом. Таким образом уже на уровне незрелой гигантской молекулы пре-рРНК происходит специфическое связывание с рибосомными белками: около 50% белков большой субъединицы и около 30% малой субъединицы связываются с пре-рРНК во время ее синтеза или вскоре после него. Такая связь 45S РНК с белками и приводит к тому, что латеральные транскрипты имеют толщину около 10 нм (после оттеснения металлами), на их свободном конце часто наблюдается крупная гранула (30 нм), что может указывать на высокую степень компактизации РНК и белка на 5’-конце цепи РНК. Распад 45S РНК на более короткие отрезки, явление созревания рРНК или процессинг, происходит после завершения транскрипции. Ферментативный механизм этого явления еще до конца не ясен, в нем принимает участие эндо- и экзонуклеазы. При этом происходит последовательное расщепление пре-рРНК на фрагменты и частичная деградация участков РНК на этих фрагментах. В результате процессинга пре-рРНК примерно 50% нуклеотидов первично синтезированной молекулы отщепляется (мол. вес 45S РНК составляет 4,6 х 106, а суммарный мол. вес зрелых рРНК около 2,2 х 106) (рис. 86). Таким образом, в ядрышке локализуются следующие основные предшественники рибосом: 1. Транскрипты рРНК в процессе их роста; 2. 80S РНП, содержащие 45S РНК, они могут составлять до 10-20% всех РНП ядрышка; 3. 55S РНП, предшественники большой субъединицы, могут составлять до 70-80% всех РНП ядрышка; время созревания большой рибосомной субъединицы занимает около одного часа; 4. Незрелые малые (40S РНП) субъединицы рибосом, быстро (за 15-30 мин) покидающие ядрышко. В интенсивно функционирующих ядрышках происходит синтез огромного числа рибосом: 1500-3000 штук в минуту. Поэтому в ядрышке насчитывается около 5 х 104 предшественников рибосом. Структура ядрышка О тонком строении ядрышка сведения были получены главным образом методом электронной микроскопии. Световая микроскопия давала ограниченный набор сведений о структуре ядрышка из-за их малого размера (1-5 мкм) и недостаточной разрешающей способности данного метода. Из прижизненных наблюдений было видно, что ядрышки обладают высокой плотностью и высоким светопреломлением. В их структуре даже прижизненно видна некоторая неоднородность: описывались нитчатые (нуклеолонемы), гранулярные компоненты (нуклеолини), а также светлые зоны - “вакуоли”. Гистохимически в ядрышках выявлялась РНК, но не ДНК. ДНК в ядрышках выявлялась лишь в периферической их зоне в виде т.н. околоядрышкового хроматина, который мог прилежать к одной из сторон ядрышка, окружать его кольцом, или вообще отсутствовать. Считалось, что околоядрышковый хроматин представляет собой гетерохроматиновые зоны. Кроме того было найдено, что ядрышки имеют некоторое сродство к солям серебра, обладают аргентофилией, могут восстанавливать серебро из различных растворов (нитрат серебра, “аммиачное серебро”, протеинаты серебра). При этом происходит отложение темных осадков исключительно в ядрышках интерфазных клеток, а также в ядрышковых организаторах на митотических хромосомах при делении клетки. Первые электронномикроскопические работы показали, что ядрышки самых различных объектов несмотря на их разнообразие, построены из одинаковых компонентов: гранулярного и фибриллярного (рис. 87). При этом гранулы в составе ядрышек имели размеры 15-20 нм и были несоизмеримо меньше тех “гранул”, что были видны в световом микроскопе. Кроме гранул в составе ядрышек обнаружили зоны скопления тонких (3-5 нм) фибрилл - диффузная часть ядрышек. Взаимное расположение гранулярных и фибриллярных зон в ядрышке может быть различным. Так, в некоторых случаях, фибриллярный компонент занимает центральную часть ядрышка в виде однородного образования (печень аксолотля, многие ядрышки растительных меристем) или в виде нескольких (3-5) отдельных зон (рис. 88). Обычно гранулярный компонент (ГК) расположен на периферии ядрышка, но встречаются случаи, когда фибриллярный и гранулярный компонент распределены в ядрышке равномерно. Часто в структуре ядрышек фибриллярно-гранулярные компоненты образуют нитчатые структуры, нуклеолонемы (ядрышковые нити), толщиной около 100-200 нм. Эти нуклеолонемы при достаточном контрастировании могут быть видны даже в световом микроскопе. Ядрышковые нити или нкулеолонемы также неоднородны по своему строению: в них кроме гранул 15 нм, входит множество тонких фибрилл, которые могут образовывать в нуклеолонемах отдельные сгущения. Неоднородной оказалась структура и диффузного, фибриллярного компонента. Было найдено, что практически во всех типах ядрышек как животных, так и растительных объектов встречаются т.н. фибриллярные центры (ФЦ), участки скопления фибрилл с низкой электронной плотностью, окруженные зоной фибрилл более высокой электронной плотности - плотный фибриллярный компонент (ПФК). Кроме гранул и фибриллярных участков в структуре ядрышка обнаруживаются хроматиновые компоненты: такие как околоядрышковый хроматин, который может примыкать к ядрышку и даже окружать его. Часто 30 нм фибриллы хроматина по периферии ядрышка заходят в лакуны, между нуклеолонемными участками. Наконец, в составе ядрышка выявляется белковый остов, матрикс. На ультратонких срезах необработанных ядрышек матрикс не выявляется в виде отдельного компонента, но если экстрагировать из ядрышек РНК, ДНК и белки, связанные с ними, то можно видеть, что ядрышко как таковое, не распадается, не теряет своей общей формы. После таких обработок структура ядрышка представлена рыхлой фибриллярной сетью, заполняющей объем ядрышка. Таким образом, в структуре ядрышек можно различить следующие пять компонентов: гранулярный, фибриллярные центры, плотный фибриллярный компонент, хроматин, белковый сетчатый матрикс. Каким же образом распределены внутри ядрышек рДНК, рРНК и белки, где располагаются матрицы для синтеза рРНК, где первичные транскрипты, где предшественники рибосом, зрелые рибосомы - все эти вопросы были решены с применением самых разнообразных молекулярно-биологических и цитологических методов. Один из этих методов, - метод регрессивного окрашивания нуклеиновых кислот, основан на том, что ионы уранила, связанные с ДНК, более легко вымываются со срезов при обработке их хелатоном ЭДТА, чем ионы, связанные с РНК. Это позволяет различить в ядре плотные окрашенные структуры, содержащие РНК и структуры потерявшие окраску, те что содержат ДНК. Так в разнообразных ядрах участки хроматина как конденсированного, так и диффузного теряют окраску, а компоненты, содержащие РНК - сохраняют. В ядре при этом контрастно выделяются разнообразные РНП, содержащиеся в основном объеме ядра и ядрышка. При этом в ядрышках интенсивно окрашены многочисленные гранулы, они окрашены так же, как рибосомы цитоплазмы. Окрашенным является плотный фибриллярный компонент, фибриллярные центры окрашены слабее, а внутриядрышковый и околоядрышковый хроматин выглядят светлыми. Следовательно можно предположить, что как гранулярный компонент, который скорее всего представляет субъединицы рибосом, так и плотный фибриллярный компонент содержат РНК. Так при короткой пульсовой метке тритированным уридином (3H-уридин), первые следы мечения обнаруживались сначала (через 1-15 мин) в плотном фибриллярном компоненте (ПФК), а затем (до 30 мин) меченым оказывался гранулярный компонент (ГК). Важно отметить, что в фибриллярных центрах (ФЦ) метка не обнаруживалась. Из этого наблюдения был сделан вывод, что 45S пре-рРНК синтезируется в области плотного фибриллярного компонента, а гранулярный компонент ядрышка соответствует прерибосомным частицам (55S-, 40S РНП). Оставался открытым вопрос о природе фибриллярных центров, окруженных плотными РНК-содержащими фибриллами. Было обнаружено с помощью различных методов (специфическое окрашивание с помощью осмий-амина, ДНКазы, меченной золотом, связыванием меченого актиномицина, прямой молекулярной гибридизацией с меченой рДНК), что в составе фибриллярных центров находится ДНК, ответственная за синтез рРНК. Зоны фибриллярных центров отличаются от остального хроматина тем, что состоят из тонких хроматиновых фибрилл, значительно обедненных гистоном HI (что показано с помощью меченных коллоидным золотом антител). Эти исследования позволили связать друг с другом данные молекулярной организации транскрибируемых рибосомных генов с данными морфологии ядрышек и выяснить топологию в объеме ядрышка процесса синтеза рибосомной РНК и образования рибосом. По модели, предложенной Жоссеном (1984), в фибриллярных центрах расположены неактивные рибосомные гены и, возможно, спейсерные участки. Транскрипция пре-рРНК происходит по периферии фибриллярных центров, где плотный фибриллярный компонент и представляет собой 45S пре-рРНК, располагающиеся в виде “елочек” на деконденсированных участках рДНК (рис. 89). После завершения транскрипции 45S РНК теряет связь с транскрипционной единицей на ДНК в зоне плотного фибриллярного компонента, каким-то еще непонятным образом переходит в гранулярную зону, где и происходит процессинг рРНК, образование и созревание рибосомных субъединиц.
|
||||
Последнее изменение этой страницы: 2016-07-16; просмотров: 800; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.217.242.39 (0.01 с.) |