Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Рецепторная роль плазмолеммы

Поиск

Мы уже встречались с этой особенностью плазматической мембраны при ознакомлении с ее транспортными функциями. Белки-переносчики и насосы являются кроме всего также рецепторами, узнающими и взаимодействующими с определенными ионами. Рецепторные белки связываются с лигандами и участвуют в отборе молекул, поступающих в клетки.

В качестве таких рецепторов на поверхности клетки могут выступать белки мембраны или элементы гликокаликса - гликопротеиды. Такие чувствительные участки к отдельным веществам могут быть разбросаны по поверхности клетки или собраны в небольшие зоны.

Разные клетки животных организмов могут обладать разными наборами рецепторов или же разной чувствительностью одного и того же рецептора.

Роль многих клеточных рецепторов заключается не только в связывании специфических веществ или способности реагировать на физические факторы, но и в передаче межклеточных сигналов с поверхности внутрь клетки. В настоящее время хорошо изучена система передачи сигнала клеткам с помощью некоторых гормонов, в состав которых входят пептидные цепочки. Было найдено, что эти гормоны связываются со специфическими рецепторами на поверхности плазматической мембраны клетки. Рецепторы, после связи с гормоном активируют другой белок, лежащий уже в цитоплазматической части плазматической мембраны, - аденилатциклазу. Этот фермент синтезирует молекулу циклического АМФ из АТФ. Роль циклического АМФ (цАМФ) заключается в том, что он является вторичным мессенджером - активатором ферментов - киназ, вызывающих модификации других белков-ферментов. Так, при действии на печеночную клетку гормона поджелудочной железы глюкагона, вырабатываемого А-клетками островков Лангерганса, гормон связывается со специфическим рецептором, что стимулирует активацию аденилатциклазы. Синтезированный цАМФ активирует протеинкиназу А, которая в свою очередь активирует каскад ферментов, в конечном счете расщепляющих гликоген (запасной полисахарид животных) до глюкозы. Действие инсулина заключается в обратном - он стимулирует вхождение глюкозы в печеночные клетки и отложение ее в виде гликогена.

В целом цепь событий развертывается следующим образом: гормон взаимодействует специфически с рецепторной частью этой системы и, не проникая внутрь клетки, активирует аденилатциклазу, которая синтезирует цАМФ, активирующий или ингибирующий внутриклеточный фермент или группу ферментов. Таким образом, команда, сигнал от плазматической мембраны передается внутрь клетки. Эффективность этой аденилатциклазной системы очень высока. Так взаимодействие одной или нескольких молекул гормона может привести за счет синтеза множества молекул цАМФ к усилению сигнала в тысячи раз. В данном случае аденилатциклазная система служит преобразователем внешних сигналов.

Существует и другой путь, при котором используются другие вторичные мессенджеры, - это т.н. фосфатидилинозитольный путь. Под действием соответствующего сигнала (некоторые нервные медиаторы и белки) активируется фермент фосфолипиза C, которая расщепляет фосфолипид фосфатидилинозитолдифосфат, который входит в состав плазматической мембраны. Продукты гидролиза этого липида, с одной стороны, активируют протеинкиназу C, которая вызывает активацию каскада киназ, что приводит к определенным клеточным реакциям, а с другой - приводит к освобождению ионов кальция, который регулирует целый ряд клеточных процессов.

Другой пример рецепторной активности - рецепторы ацетилхолина, важного нейромедиатора. Ацетилхолин, освобождаясь из нервного окончания, связывается с рецептором на мышечном волокне, вызывает импульсное поступление Na+ в клетку (деполяризация мембраны), открывая сразу около 2000 ионных каналов в зоне нервно-мышечного окончания.

Разнообразие и специфичность наборов рецепторов на поверхности клеток приводит к созданию очень сложной системы маркеров, позволяющих отличать свои клетки (той же особи или того же вида) от чужих. Сходные клетки вступают друг с другом во взаимодействия, приводящие к слипанию поверхностей (конъюгация у простейших и бактерий, образование тканевых клеточных комплексов). При этом клетки, отличающиеся набором детерминантных маркеров или не воспринимающие их, либо исключаются из такого взаимодействия, либо у высших животных уничтожаются в результате иммунологических реакций (см. ниже).

С плазматической мембраной связана локализация специфических рецепторов, реагирующих на физические факторы. Так, в плазматической мембране или у ее производных у фотосинтетических бактерий и синезеленых водорослей локализованы белки-рецепторы (хлорофиллы), взаимодействующими с квантами света. В плазматической мембране светочувствительных клеток животных расположена специальная система фоторецепторных белков (родопсин), с помощью которых световой сигнал превращается в химический, что в свою очередь приводит к генерации электрического импульса.

Межклеточное узнавание

У многоклеточных организмов за счет межклеточных взаимодействий образуются сложные клеточные ансамбли, поддержание которых может осуществляться разными путями. В зародышевых, эмбриональных тканях, особенно на ранних стадиях развития, клетки остаются в связи друг с другом за счет способности их поверхностей слипаться. Это свойство адгезии (соединения, сцепления) клеток может определяться свойствами их поверхности, которые специфически взаимодействуют друг с другом. Механизм этих связей достаточно хорошо изучен, он обеспечивается взаимодействием между гликопротеидами плазматических мембран. При таком межклеточном взаимодействии клеток между плазматическими мембранами всегда остается щель шириной около 20 нм, заполненная гликокаликсом. Обработка ткани ферментами, нарушающими целостность гликокаликса (муказы, действующие гидролитически на муцины, мукополисахариды) или повреждающие плазматическую мембрану (протеазы), приводит к обособлению клеток друг от друга, к их диссоциации. Однако если удалить фактор диссоциации, то клетки могут снова собираться, реагрегировать. Так можно диссоциировать клетки разных по окраске губок, оранжевых и желтых. Оказалось, что в смеси этих клеток образуются два типа агрегатов: состоящие только из желтых и только из оранжевых клеток. При этом смешанные клеточные суспензии самоорганизуются, восстанавливая исходную многоклеточную структуру. Сходные результаты были получены с суспензиями разделенных клеток эмбрионов амфибий; в этом случае происходит избирательное пространственное обособление клеток эктодермы от энтодермы и от мезенхимы. Более того, если для реагрегации используются ткани поздних стадий развития зародышей, то в пробирке самостоятельно собираются различные клеточные ансамбли, обладающие тканевой и органной специфичностью, образуются эпителиальные агрегаты, сходные с почечными канальцами, и т.д.

Было найдено, что за агрегацию однородных клеток отвечают трансмембранные гликопротеиды. Непосредственно за соединение, адгезию, клеток отвечают молекулы т.н. CAM-белков (cell adhesion molecules). Некоторые из них связывают клетки друг с другом за счет межмолекулярных взаимодействий, другие образуют специальные межклеточные соединения или контакты.

Взаимодействия между адгезивными белками может быть гомофильные, когда соседние клетки связываются друг с другом с помощью однородных молекул, гетерофильные, когда в адгезии участвуют разного рода CAM на соседних клетках. Встречается межклеточное связывание через дополнительные линкерные молекулы.

CAM-белков бывает несколько классов. Это кадгерины, иммуноглобулино-подобные N-CAM (молекулы адгезии нервных клеток), селектины, интегрины.

Кадгерины представляют собой интегральные фибриллярные мембранные белки, которые образуют параллельные гомодимеры. Отдельные домены этих белков связаны с ионами Ca2+, что придает им определенную жесткость. Кадгеринов насчитывают более 40 видов. Так Е-кадгерин характерен для клеток преимплантированных эмбрионов и для эпителиальных клеток взрослых организмов. P-кадгерин характерен для клеток трофобласта, плаценты и эпидермиса, N-кадгерин располагается на поверхности нервных клеток, клеток хрусталика, на сердечных и скелетных мышцах.

Молекулы адгезии нервных клеток (N-CAM) принадлежат к суперсемейству иммуноглобулинов, они образуют связи между нервными клетками. Некоторые из N-CAM участвуют в соединении синапсов, а также при адгезии клеток иммунной системы.

Селектины также интегральные белки плазматической мембраны участвуют в адгезии эндотелиальных клеток, в связывании кровяных пластинок, лейкоцитов.

Интегрины представляют собой гетеродимеры, с a и b-цепями. Интегрины в первую очередь осуществляют связь клеток с внеклеточными субстратами, но могут участвовать и в адгезии клеток друг с другом.

Узнавание чужеродных белков

Как уже указывалось, на попавшие в организм чужеродные макромолекулы (антигены), развивается сложная комплексная реакция - иммунная реакция. Суть ее заключается в том, что часть лимфоцитов вырабатывает специальные белки - антитела, которые специфически связываются с антигенами. Так, например, макрофаги своими поверхностными рецепторами узнают комплексы антиген-антитело и поглощают их (например, поглощение бактерий при фагоцитозе).

В организме всех позвоночных, кроме того, существует система рецепции чужеродных клеток или же своих, но с измененными белками плазматической мембраны, например при вирусных инфекциях или при мутациях, часто связанных с опухолевым перерождением клеток.

На поверхности всех клеток позвоночных располагаются белки, т.н. главного комплекса гистосовместимости (major histocompatibility complex - MHC). Это интегральные белки гликопротеины, гетеродимеры. Очень важно запомнить, что каждый индивидум имеет свой набор таких белков MHC. Это связано с тем, что они очень полиморфны, т.к. в каждом индивидуме имеется большое число альтериальных форм одного и того же гена (более 100), кроме того имеется 7-8 локусов, кодирующих молекулы MHC. Это приводит к тому, что каждая клетка данного организма, имея набор белков MHC, будет отличаться от клеток индивидума этого же вида. Специальная форма лимфоцитов, Т-лимфоциты, узнают MHC своего организма, но малейшие изменения в структуре MHC (например, связь с вирусом, или результат мутации в отдельных клетках), приводит к тому, что Т-лимфоциты узнают такие изменившиеся клетки и их уничтожают, но не путем фагоцитоза. Они выделяют из секреторных вакуолей специфические белки-перфорины, которые встраиваются в цитоплазматическую мембрану измененной клетки, образуют в ней трансмембранные каналы, делая плазматическую мембрану проницаемой, что и приводит к гибели измененной клетки (рис. 143, 144).



Поделиться:


Последнее изменение этой страницы: 2016-07-16; просмотров: 350; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.116.24.148 (0.007 с.)