Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Объединенный критерий Байеса-Лапласа и минимакса.

Поиск

Стремление получить критерии, которые бы лучше приспосабливались к имеющейся ситуации, чем все до сих пор рассмотренные, привело к построению так называемых составных критериев. В качестве примера рассмотрим критерий, полученный путем объединения критериев Байеса-Лапласа и минимакса (BL(MM)-критерий).

Правило выбора для этого критерия формулируется следующим образом:

матрица решений ||eij|| дополняется еще тремя столбцами. В первом из них записываются математические ожидания каждой из строк, во втором — разность между опорным значением

ei0j0 = maxi(maxj(eij))

и наименьшим значением

minj(eij)

соответствующей строки. В третьем столбце помещаются разности между наибольшим значением

maxj(eij)

каждой строки и наибольшим значением maxj(ei0j) той строки, в которой находится значение ei0j0. Выбираются те варианты, строки которых (при соблюдении приводимых ниже соотношений между элементами второго и третьего столбцов) дают наибольшее математическое ожидание. А именно, соответствующее значение

ei0j0 - maxj(eij)

из второго столбца должно быть или равно некоторому заранее заданному уровню риска Eдоп. Значение же из третьего столбца должно быть больше значения из второго столбца.

Применение этого критерия обусловлено следующими признаками ситуации, в которой принимается решение:

1. вероятности появления состояний Fj неизвестны, однако имеется некоторая априорная информация в пользу какого-либо определенного распределения;

2. необходимо считаться с появлением различных состояний как по отдельности, так и в комплексе;

3. допускается ограниченный риск;

4. принятое решение реализуется один раз или многократно.

BL(MM)-критерий хорошо приспособлен для построения практических решений прежде всего в области техники и может считаться достаточно надежным. Однако заданные границы риска Eдоп и, соответственно, оценок риска Ei не учитывает ни число применения решения, ни иную подобную информацию. Влияние субъективного фактора хотя и ослаблено, но не исключено полностью.

Условие

maxj(eij)-maxj(ei0j)≥Ei

существенно в тех случаях, когда решение реализуется только один или малое число раз. В этих условиях недостаточно ориентироваться на риск, связанный только с невыгодными внешними состояниями и средними значениями. Из-за этого, правда, можно понести некоторые потери в удачных внешних состояниях. При большом числе реализаций это условие перестает быть таким уж важным. Оно даже допускает разумные альтернативы. При этом не известно, однако, четких количественных указаний, в каких случаях это условие следовало бы опускать.

Критерий произведений.

maxi(eir):= maxi(∏eij)

Правило выбора в этом случае формулируется так:

Матрица решений ||eij|| дополняется новым столбцом, содержащим произведения всех результатов каждой строки. Выбираются те варианты, в строках которых находятся наибольшие значения этого столбца.

Применение этого критерия обусловлено следующими обстоятельствами:

1. вероятности появления состояния Fj неизвестны;

2. с появлением каждого из состояний Fj по отдельности необходимо считаться;

3. критерий применим и при малом числе реализаций решения;

4. некоторый риск допускается.

Критерий произведений приспособлен в первую очередь для случаев, когда все eij положительны. Если условие положительности нарушается, то следует выполнять некоторый сдвиг eij+а с некоторой константой а>|minij(eij)|. Результат при этом будет, естественно зависеть от а. На практике чаще всего

а:= |minij(eij)|+1.

Если же никакая константа не может быть признана имеющей смысл, то критерий произведений не применим.

Пример.

Рассмотрим тот же пример, что и ранее (см. выше).

Построение оптимального решения для матрицы решений о проверках по критерию Гурвица имеет вид (при С=0, в 103):

||eij|| С⋅minj(eij) (1-С)⋅maxj(eij) eir maxi(eir)
-20,0 -22,0 -25,0 -12,5 -10.0 -22,5  
-14,0 -23.0 -31.0 -15,5 -7.0 -22,5  
  -24.0 -40.0 -20.0   -20.0 -20.0

В данном примере у решения имеется поворотная точка относительно весового множителя С: до С=0,57 в качестве оптимального выбирается Е3, а при больших значениях — Е1.

Применение критерия Ходжа-Лемана (q=0,33, v=0, в 103):

∑eij⋅qj minj(eij) v⋅∑eij⋅qj (1-v)⋅∑eij⋅qj eir maxi(eir)
-22,33 -25,0 -11,17 -12,5 -23,67 -23,67
-22,67 -31,0 -11,34 -15,5 -26,84  
-21,33 -40,0 -10,67 -20,0 -30,76  

Критерий Ходжа-Лемана рекомендует вариант Е1 (полная проверка) — так же как и ММ-критерий. Смена рекомендуемого варианта происходит только при v=0,94. Поэтому равномерное распределение состояний рассматриваемой машины должно распознаваться с очень высокой вероятностью, чтобы его можно было выбрать по большему математическому ожиданию. При этом число реализаций решения всегда остается произвольным.

Критерий Гермейера при qj = 0.33 дает следующий результат (в 103):

||eij|| ||eijqj|| eir = minj(eijqj) maxi(eir)
-20,0 -22,0 -25,0 -6,67 -7,33 -8,33 -8,33 -8,33
-14,0 -23,0 -31,.0 -4,67 -7,67 -10,33 -10,33  
  -24,0 -40,0   -8,0 -13,33 -13,33  

В качестве оптимального выбирается вариант Е1. Сравнение вариантов с помощью величинe eirпоказывает, что способ действия критерия Гермейера является даже более гибким, чем у ММ-критерия.

В таблице, приведенной ниже, решение выбирается в соответствии с BL(MM)-критерием при q1=q2=q3=1/2 (данные в 103).

||eij|| ∑eijqj ei0j0 - minj(eij) maxj(eij) maxj(eij) - maxj(ei0j)
-20,0 -22,0 -25,0 -23,33   -20,0  
-14,0 -23,0 -31,0 -22,67 +6,0 -14,0 +6,0
  -24,0 -40,0 -21,33 +15,0   +20,0

Вариант Е3 (отказ от проверки) принимается этим критерием только тогда, когда риск приближается к Eвозм = 15⋅103. В противном случае оптимальным оказывается Е1. Во многих технических и хозяйственных задачах допустимый риск бывает намного ниже, составляя обычно только незначительный процент от общих затрат. В подобных случаях бывает особенно ценно, если неточное значение распределения вероятностей сказывается не очень сильно. Если при этом оказывается невозможным установить допустимый риск Eдоп заранее, не зависимо от принимаемого решения, то помочь может вычисление ожидаемого риска Eвозм. Тогда становится возможным подумать, оправдан ли подобный риск. Такое исследование обычно дается легче.

Результаты применения критерия произведения при а = 41⋅103 и а = 200⋅103 имеют вид:

a ||eij + a|| eir = ∏jeij maxieir
  +21 +19 +16    
+27 +18 +10    
+41 +17 +1    
  +180 +178 +175    
+186 +177 +169    
+200 +176 +160    

Условие eij > 0 для данной матрицы не выполнимо. Поэтому к элементам матрицы добавляется (по внешнему произволу) сначала а = 41⋅103, а затем а = 200⋅103.

Для а = 41⋅103 оптимальным оказывается вариант Е1, а для а = 200⋅103 — вариант Е3, так что зависимость оптимального варианта от а очевидна.

Лекция 12: Основные понятия теории множеств

Рассмотрение системы как совокупности элементов дает возможность привлечь для ее математического описания аппарат теории множеств. При этом в ряде важных случаев связи между элементами удобно описываются с помощью аппарата математической логики.

Понятие множества — является одним из тех фундаментальных понятий математики, которым трудно дать точное определение, используя элементарные понятия. Поэтому ограничимся описательным объяснением понятия множества.

Множеством называется совокупность определенных вполне различаемых объектов, рассматриваемых как единое целое. Создатель теории множеств Георг Кантор давал следующее определение множества — «множество есть многое, мыслимое нами как целое».

Отдельные объекты, из которых состоит множество, называются элементами множества.

Множества принято обозначать большими буквами латинского алфавита, а элементы этих множеств — маленькими буквами латинского алфавита. Множества записываются в фигурных скобках { }.

Принято использовать следующие обозначения:

  • a ∈ X — «элемент a принадлежит множеству X»;
  • a ∉ X — «элемент a не принадлежит множеству X»;
  • ∀ — квантор произвольности, общности, обозначающий «любой», «какой бы не был», «для всех»;
  • ∃ — квантор существования: ∃y ∈ B — «существует (найдется) элемент y из множества B»;
  • ∃! — квантор существования и единственности: ∃!b ∈ C — «существует единственный элемент b из множества C»;
  • : — «такой, что; обладающий свойством»;
  • → — символ следствия, означает «влечет за собой»;
  • ⇔ — квантор эквивалентности, равносильности — «тогда и только тогда».

Множества бывают конечные и бесконечные. Множества называются конечным, если число его элементов конечно, т.е. если существует натуральное число n, являющееся числом элементов множества. А={a1, a2,a 3,..., an}. Множество называется бесконечным, если оно содержит бесконечное число элементов. B={b1,b2,b3,...}. Например, множество букв русского алфавита — конечное множество. Множество натуральных чисел — бесконечное множество.

Число элементов в конечном множестве M называется мощностью множества M и обозначается |M|. Пустое множество — множество, не содержащее ни одного элемента — ∅. Два множества называются равными, если они состоят из одних и тех же элементов, т.е. представляют собой одно и тоже множество. Множества не равны X ≠ Y, если в Х есть элементы, не принадлежащие Y, или в Y есть элементы, не принадлежащие Х. Символ равенства множеств обладает свойствами:

  • Х=Х; — рефлексивность
  • если Х=Y, Y=X — симметричность
  • если X=Y,Y=Z, то X=Z — транзитивность.

Согласно такого определения равенства множеств мы естественно получаем, что все пустые множества равны между собой или что то же самое, что существует только одно пустое множество.



Поделиться:


Последнее изменение этой страницы: 2016-08-01; просмотров: 596; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.17.78.184 (0.007 с.)