Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Устойчивость динамических системСодержание книги
Поиск на нашем сайте
Пусть множество входных воздействий содержат элементы в интервале (-∞; +∞) и пусть p = [pk, k={1,k}] семейство операторов перехода, которые при заданном множестве входных воздействий X^ реализуют полное множество Z^ состояний системы мощностно Z^ = M1 ⋅ M2 ⋅... ⋅ MN Реальный объект имеет вполне определенный оператор переходов pk ⊂ p и находится под воздействием определенного множества входных сигналов X ⊂ X^. Если для заданных Х и pk существует соотношение Zt = pk{(t0, t), Zt0, X}, то множество [Zt0, Zt1,..., Zt] на любом интервале наблюдения является замкнутым, а система S = [pk, G, X, Y, T] устойчивой относительно множества входных воздействий Х. Управляемость динамических систем В общем случае задача управления формируется в следующем виде. Известно множество входных сигналов Х, и семейство операторов перехода Р и выходов G. Задано необходимое значение выхода Yt в момент времени t. Найти управляющее воздействие v ∈ V обеспечивающие выбор операторов перехода p ∈ P и выхода g ∈ G обеспечивающие необходимое yt. Исходя из общей формулировки задачи управления, необходимо различать управление множеством выходов. Достижение цели управления обеспечивается выбором операторов p и q. Система является управляемой, если для заданных Xt ⊂ X и Ct ⊂ C, существуют такие Ct0 ⊂ C, что существуют p(C,Xt) ⊂ P или g(Ct,yt). Отсюда следует, что управление может осуществляться начальным состоянием, операторами переходов и выходов. При этом задача управления сводится к следующему. Известно x ⊂ X, p ⊂ P, g ⊂ G. Задано yt = y ⊂ Y. Необходимо найти v ⊂ V при котором p(ct = c ⊂ C, xt = x ⊂ X) и g(yt = y ⊂ Y, ct = c ⊂ C). Интегративные свойства систем В предыдущих разделах были рассмотрены структурные и динамические свойства систем, которые не связаны с какой либо физической природой объекта анализа и вытекают из математических свойств абстрактных множеств. Интегративные свойства систем охватывают структурные и динамические свойства одновременно, носят прикладной характер и базируются на принципах и закономерностях естествознания. Они проявляются на множестве отношений свойств объекта и внешней среды. Т.е. отражают результат их взаимодействий в виде изменений объекта и внешней среды. Характер взаимодействия объекта и внешней среды может быть различным: сплоченным или разобщенным. При этом соответственно и результаты взаимодействия могут быть положительными и отрицательными. В этом смысле рассмотрим две группы наиболее общих интегративных свойств, связанных с оценкой возможности возникновения положительных результатов (качество и эффективность) и отрицательных результатов (безопасность и живучесть). Качество системы Качество системы представляет виртуальную оценку возможности получения положительного результата взаимодействия объекта с внешней средой. Под качеством понимается обобщенная положительная характеристика системы, которая показывает ее полезность для макросистемы, состоящей из двух подсистем: объекта и внешней среды. Для выражения качество служит показателем качества — положительное свойство системы. Суждение о качестве системы основывается на сравнении показателя качества одной системы с показателем качества другой системы реально существующей или виртуальной. Решение о качестве принимается на основе критерия — правило выбора альтернатив (вариантов). Рассмотрим следующую задачу. Пусть А — множество свойств виртуальной системы, т. е. потребностей макросистемы. В — множество свойств системы. Здесь возникают несколько вариантов, представленные на рисунках. Рис. — Соотношение множеств свойств систем А и A1 и потребностей макросистемы В. 1. Система не удовлетворяет потребностям макросистемы и следовательно непригодна. 2. Система удовлетворяет потребностям по возможности по использование ее ресурса нерационально |А| > |B|. 3. Система A2 удовлетворяет потребностям макросистемы, поэтому она превосходит систему A1. 4. Система пригодна и рационально расходует свой ресурс. Из рассмотренных примеров вытекают три основных критерия качества системы пригодности, превосходства и оптимальности. Эффективность Понятие эффективность связано с целенаправленными процессами, т. е. процессом функционирования некоторой системы, которая организуется и проводится для достижения определенной цели, т. е. получение определенного результата. Характеризуя целенаправленный процесс необходимо различать качества определенных получаемых результатов и качество множества результатов рассматриваемых как единое целое. Последнее характеризует уровень достижения цели. Это свойство будет называться эффективностью целенаправленного процесса (операции). Свойство обобщенного результата операции условно можно разделить на три группы:
Соответственно показатели эффективности отражают одну из групп свойств или совместно все. В этой связи эффективностью называют комплексное свойство целенаправленного процесса. Показатели эффективности Показатели эффективности должны удовлетворять ряду общих обязательных требований. Основными из них являются: представительность, полнота, стохастичность, простота. Представительность означает, что эффективность должна оцениваться относительно главной цели операции, а показатель должен иметь прямое отображение цели, характеристик процесса и внешней среды. Количественная величина показателя должна быть чувствительна к изменению характеристик процесса и случайных факторов во внешней среде. А математическая модель должна обеспечивать проведение необходимых измерений и вычислений в приемлемые сроки. В общем виде показатель эффективности имеет вид вектора α = <Rц, Rр, T> где Rц — целевые эффекты, Rр — ресурсоемкость, Т — затраты времени. Поскольку процесс функционирования системы протекает во внешней среде с характеристиками V, состав этих характеристик оказывает влияние на Rц, Rр и Т то реально величина Э представляет множество Э(V) = [e(un), n={1,N}] Поэтому цель операции формально можно представить в следующем виде. Э(V) ⊂ {Эдон.}.
|
||||
Последнее изменение этой страницы: 2016-08-01; просмотров: 251; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.144.108.200 (0.006 с.) |