Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Очистка от продуктов коррозииСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Электролитическая очистка с применением электрического тока от внешнего источника относится к универсальным сильно действующим способам, применяемым для очистки изделий из любых металлов, при условии хорошей сохранности предмета. Обычно этим способом очищают достаточно крупные предметы (оружие, орудия труда, предметы домашнего обихода), если они имеют хорошо сохранившуюся металлическую сердцевину, так как очистка происходит до полного обнажения металлической поверхности или одновременно однородные мелкие предметы с одинаковой сохранностью. Этот метод позволяет наиболее полно очистить металл от продуктов коррозии, выводя их из пор и трещин. Очистка осуществляется следующим образом. Предмет, к которому присоединен отрицательный полюс источника постоянного тока, погружают в ванну, заполненную электролитом; положительный полюс источника питания присоединяют к вспомогательному электроду (Рис. 2). При прохождении тока на катоде -предмете создаются условия для восстановительных процессов, при которых высшие окислы металлов переходят в низшие, более растворимые. Кроме того, выделяющийся молекулярный водород оказывает активное механическое воздействие, в результате которого происходит разрыхление коррозионной корки и отслаивание ее от поверхности металла. При этом нет опасности повреждения обнажившейся металлической сердцевины. В качестве источника питания используют выпрямитель постоянного тока ВИП-025 или типа ВС. Главным фактором, влияющим на электродные процессы, является сила тока. Она зависит от сопротивления электролита, размеров предмета и вспомогательного электрода и колеблется в зависимости от электрического сопротивления слоя продуктов коррозии. Рабочая плотность тока должна быть до 10 А/дм2. В процессе обработки плотность тока увеличивается по мере удаления наслоений, поэтому для регулировки плотности тока в цепь включают внешнее сопротивление - реостат, или ток регулируется настройкой вырямителя. Для вспомогательного электрода - анода лучше у использовать пластину из нержавеющей стали, в качестве ванны емкость из стекла или химически стойкой органики, например, винипласта. Удобно использовать ванну из нержавеющей стали этом случае непосредственно к ней подключают положительный полюс источника питания и она служит анодом. На ванну кладут латунные или медные токопроводящие штанги, в случае металлической ванны - на изоляционные прокладки. К штангам на проволоке подвешиваются электроды. При использовании в качестве анода железа для предовращения засорения электролита шламом электроды следует поместить в нейлоновые чехлы. Некоторые авторы рекомендуют угольные электроды. Однако ими можно пользоваться только в отдельных случаях, которые будут оговорены особо. Чаще всего в качестве электролита используется раствор едкого натра. Кислыми ваннами пользуются редко. При обработке массовых мелких предметов их кладут в металлическую корзину, которая присоединяется к отрицательному полюсу источника питания. Корзину надо периодически встряхивать для более равномерной обработки предметов. Длительность очистки зависит от характера и толщины коррозионных наслоений. Этот процесс можно ускорить, чередуя электролитическую очистку с механической, вынимая для этого предметы из ванны обязательно при включенном токе, иначе на поверхности предмета образуется металлический налет. По мере засорения электролита шламом его надо заменять новым, электроды или стенки ванны очищать от отложений. Электрические контакты должны быть всегда зачищенными, поверхность обрабатываемого предмета в месте контакта - очищена от коррозии Общая продолжительность обработки для разных предметов настолько различна, что невозможно дать определенные рекомендации. Во всяком случае для дальнейшей сохранности предмета важно удалить все продукты коррозии до конца, так как не удаленные продукты коррозии могут дать в дальнейшем рецидивы. Чем длительнее процесс, тем полнее удаляются все активаторы коррозии. Очистку считают законченной, когда на предмете нет следов коррозии и поверхность плотно покрыта пузырьками газа. Процессы электролиза могут сопровождаться одновременным образованием водорода и кислорода. Поэтому операцию электролитической очистки надо проводить в вытяжном; шкафу, чтобы избежать образования и скопления взрывчатой смеси. Электрохимическая очистка - катодное удаление продуктов коррозии без внешнего источника электрического тока. Для этого составляется электрохимическая система из металлического предмета, который надо очистить, металла, обладающего более электроотрицательным потенциалом по сравнению с металлом изделия, и электролита. Процессы, происходящие на металле при этом способе, не отличаются от процессов очистки при подаче тока от внешнего источника тока. Электрохимическая обработка является более "мягким" способом очистки. Ее можно использовать для археологического металла в том случае, если металлическое ядро отсутствует. По сравнению с электролитической очисткой процесс вдет медленнее но равномернее по всей поверхности, при этой обработке исключается опасность повреждения поверхности обрабатываемого предмета. Этим методом можно обрабатывать мелкие тонкие предметы. В качестве анодного металла используются цинк или алюминий в виде гранул, стружки или порошка, фольги. Гранулированный цинк можно приготовить самим следующим образом. Металл расплавляют в железном сосуде (температура плавления цинка) и сливают в ведро с холодной водой. Если необходимо иметь цинковый порошок, то гранулированный цинк растирают в железной ступке до необходимой степени зернистости. Цинковая пыль менее эффективна, так как она легко уплотняется. Выбор вида анодного металла зависит от формы предмета, рельефа и характера коррозионного слоя. Важно, чтобы постоянно был хороший контакт двух металлов (анодного и катодного). В качестве электролита используют 5%-ный раствор едкого натра или 10%- ную серную кислоту. Если предмет, кроме солей металла, покрыт известковыми или силикатными наслоениями, то результат будет эффективнее при использовании 10%-ной серной кислоты Очистку предмета или группы однородных предметов проводят следующим способом. Предметы кладут в железную или термостойкую стеклянную посуду, засыпают гранулированным металлом или обертывают стружкой, заливают электролитом. Нагревание ускоряет очистку. При плотном толстом слое продуктов коррозии для более надежного контакта анодного металла с металлическим ядром и ускорения очистки с небольшого участка поверхности предмета механически счищают коррозионный слой. Цинк в процессе обработки покрывается нерастворимыми гидрооксидами, что замедляет процесс очистки. Для повторного использования его обрабатывают слабым раствором соляной кислоты, промывают в проточной воде, а затем в дистиллированной и просушивают. В процессе электрохимической обработки продукты коррозии размягчаются, разрыхляются, их легко снять щеткой под струей воды. Если за один цикл металл не очистился, то обработку повторяют, сменив анодный металл и раствор электролита. На поверхности металла нельзя оставлять следы первоначальных продуктов коррозии, так как в них могут находиться активные хлористые соединения. Иногда восстановление продуктов коррозии происходит до металла, который осаждается поверх неудаленных коррозионных продуктов, замедляя очистку. Восстановленный металл слабо сцеплен с предметом, его необходимо удалить механически и обработку продолжить. Нагревание электролита до кипения предотвращает образование восстановленного металла. Электрохимическую обработку необходимо вести в вытяжном шкафу, так как выделяющиеся испарения чрезвычайно вредны. После электрохимической или электролитической обработки поверхность металла находится в активном состоянии, поэтому нельзя делать перерыва между очисткой и промывкой. После очистки предметы должны быть немедленно промыты, и весь предусмотренный комплекс реставрационных и консервационных мероприятий закончен без промедления. Промывка После электрохимической или электролитической обработок, как и после любой химической очистки, предмет должен быть промыт. Обычная промывка в проточной воде не дает должных результатов, так как остатки реактива с растворенными в нем продуктами удерживаются в пористом металле капиллярными силами, которые обычная промывка преодолеть не может. Устранить это явление помогает так называемая «интенсивная промывка», предложенная P.M. Органом. Предмет рекомендуется длительно вымачивать в дистиллированной воде, чередуя нагрев и охлаждение. При нагреве металл расширяется и в поры и трещины, которые имеются в продуктах коррозии и частично разрушенном слое, заливается чистая дистиллированная вода, которая растворяет остатки реактива, использованного при очистке, растворенные продукты реакции и остатки не удаленных еще солей металла, в том числе хлоридов. При охлаждении капилляры сжимаются,и из них выталкивается промывочная вода. При последующем цикле нагревания в них втягивается новая порция чистой воды. Применяя многократное чередование нагрева и охлаждения и периодической заменой воды, можно добиться практически полностью растворимых хлористых соединений. Этот метод применим для всех металлов за исключением свинца, так как горячая вода образует на свинце молочно-белую пленку гидроокиси. Для свинца нужна другая обработка, о чем будет сказано в соответствующей главе. Длительное кипячение в дистиллированной воде, которое обычно применяют реставраторы, менее результативно, чем метод "глубокой промывки". Кроме того, при кипячении образующиеся пузырьки воздуха механически действуют на хрупкий металл, образуются новые трещины, прочность снижается. Однако надо отметить, что любая промывка с нагреванием и даже без нагревания приводит к некоторому ослаблению корродированного металла. Чтобы проверить полноту промывки от очищающего раствора, после промывки к влажной поверхности прикладывают универсальную индикаторную бумагу, цвет которой зависит от кислотности среды. При достаточной промывке индикаторная бумага не дает цветной реакции. Однако индикаторная бумага не чувствительна к присутствию хлоридов в промывочной воде. Наличие хлор-иона в промывочной воде определяют следующим образом: в пробирку отбирают 10 мл промывочной воды, добавляют несколько капель азотной кислоты и несколько капель 1%-ного раствора азотнокислого серебра, пробирку закрывают пробкой (ни в коем случае пальцем) и перемешивают. При наличии в воде самых незначительных количеств хлоридов через несколько минут вода помутнеет вследствие образования нерастворимого хлорида серебра, который хорошо виден на темном фоне. Этим способом можно обнаружить десятитысячные доли процента хлоридов в воде. Одновременно должна быть проведена "холостая" проба: в 10 мл дистиллированной воды добавляются реактивы для определения хлор-ионов в тех же количествах, что и при определении их в промывочной воде. Проба не должна давать помутнения. Раствор азотнокислого серебра должен храниться в темном сосуде во избежание восстановления серебра на свету. При обнаружении следов хлоридов промывку надо продолжить до полного исчезновения помутнения при контроле пробы. Промывка вообще завершает любую очистку.металлического предмета и является одной из ответственных операций для успешной сохранности. Процесс этот длительный, но доводить его нужно непременно до конца, до полного удаления следов очищающих реагентов и исчезновения хлоридов в промывочной воде. ИНГИБИТОРЫ КОРРОЗИИ Защита металлов от коррозии ингибиторами (замедлителями) основана на свойстве некоторых химических соединений при введении их в незначительных концентрациях в коррозионную среду уменьшать скорость коррозионного процесса или полностью его подавлять. Ингибиторы применяются для защиты металлов при промывке, травлении, вводятся в полимерные покрытия, у которых при этом повышаются защитные свойства, в воски, смазки, в упаковочную бумагу, в замкнутое пространство витрин и шкафов для хранения экспонатов из металла и пр. Механизм защиты ингибиторами в общем случае заключается в том, что они, попадая на поверхность металла, адсорбируются ею и тормозят скорость ионизации металла или кислорода или одновременно того и другого. Различают ингибиторы для черных металлов, для цветнях и ингибиторы универсального действия, т.е. такие, которые способны защищать одновременно как черные, так и цветные металлы. За последние годы достигнуты значительные успехи в научной разработке проблемы защиты металлов от коррозии ингибиторами и налажен промышленный их выпуск. При реставрации изделий из металлов с успехом используются ингибиторы, разработанные для различных отраслей техники. При подборе ингибиторов рекомендуется пользоваться справочкой литературой и помнить, что вещества, замедляющие коррозию для одних металлов, могут оказаться стимуляторами коррозии для других.
|
||||
Последнее изменение этой страницы: 2016-06-23; просмотров: 1025; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.118.226.167 (0.011 с.) |